fix a typo in code snippet and processor config (#2)
Browse files- fix a typo in code snippet (d4a091673f1e222362b66e76cd12503485811488)
- Update README.md (283d3dadb4278dff272703e1e49660120ac9ee32)
- Update README.md (3d47cc1abbe7e66e6e1508588b094529329c99a0)
- fix processor config (5c99ed640fbd5953e8c10441c808bbb1d4eedca4)
Co-authored-by: Fatih <[email protected]>
- README.md +4 -4
- preprocessor_config.json +3 -3
README.md
CHANGED
@@ -20,16 +20,16 @@ You can use the raw model for video classification into one of the 600 possible
|
|
20 |
Here is how to use this model to classify a video:
|
21 |
|
22 |
```python
|
23 |
-
from transformers import
|
24 |
import numpy as np
|
25 |
import torch
|
26 |
|
27 |
-
video = list(np.random.randn(
|
28 |
|
29 |
-
|
30 |
model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-hr-finetuned-k600")
|
31 |
|
32 |
-
inputs =
|
33 |
|
34 |
with torch.no_grad():
|
35 |
outputs = model(**inputs)
|
|
|
20 |
Here is how to use this model to classify a video:
|
21 |
|
22 |
```python
|
23 |
+
from transformers import AutoImageProcessor, TimesformerForVideoClassification
|
24 |
import numpy as np
|
25 |
import torch
|
26 |
|
27 |
+
video = list(np.random.randn(16, 3, 448, 448))
|
28 |
|
29 |
+
processor = AutoImageProcessor.from_pretrained("facebook/timesformer-hr-finetuned-k600")
|
30 |
model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-hr-finetuned-k600")
|
31 |
|
32 |
+
inputs = processor(images=video, return_tensors="pt")
|
33 |
|
34 |
with torch.no_grad():
|
35 |
outputs = model(**inputs)
|
preprocessor_config.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"crop_size": {
|
3 |
-
"height":
|
4 |
-
"width":
|
5 |
},
|
6 |
"do_center_crop": true,
|
7 |
"do_normalize": true,
|
@@ -21,6 +21,6 @@
|
|
21 |
"resample": 2,
|
22 |
"rescale_factor": 0.00392156862745098,
|
23 |
"size": {
|
24 |
-
"shortest_edge":
|
25 |
}
|
26 |
}
|
|
|
1 |
{
|
2 |
"crop_size": {
|
3 |
+
"height": 448,
|
4 |
+
"width": 448
|
5 |
},
|
6 |
"do_center_crop": true,
|
7 |
"do_normalize": true,
|
|
|
21 |
"resample": 2,
|
22 |
"rescale_factor": 0.00392156862745098,
|
23 |
"size": {
|
24 |
+
"shortest_edge": 448
|
25 |
}
|
26 |
}
|