File size: 2,046 Bytes
81f1609
 
 
9efa7fd
 
81f1609
 
 
 
 
 
 
 
 
 
 
 
9efa7fd
81f1609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9efa7fd
81f1609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
tags:
- image-classification
- vision
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: roman_numerals-digit-classification-2022-09-04
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: farleyknight/roman_numerals
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8333333333333334
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roman_numerals-digit-classification-2022-09-04

This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the farleyknight/roman_numerals dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7018
- Accuracy: 0.8333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9053        | 1.0   | 289  | 1.3680          | 0.7132   |
| 1.2788        | 2.0   | 578  | 0.9499          | 0.7966   |
| 1.1232        | 3.0   | 867  | 0.8679          | 0.7279   |
| 1.0373        | 4.0   | 1156 | 0.7324          | 0.8088   |
| 0.9658        | 5.0   | 1445 | 0.7018          | 0.8333   |


### Framework versions

- Transformers 4.22.0.dev0
- Pytorch 1.12.1+cu102
- Datasets 2.4.0
- Tokenizers 0.12.1