farleyknight commited on
Commit
5e0c7e1
1 Parent(s): 5d460b6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - big_patent
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: patent-summarization-fb-bart-base-2022-09-20
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: big_patent
17
+ type: big_patent
18
+ config: all
19
+ split: train
20
+ args: all
21
+ metrics:
22
+ - name: Rouge1
23
+ type: rouge
24
+ value: 20.1093
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # patent-summarization-fb-bart-base-2022-09-20
31
+
32
+ This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the big_patent dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 2.4097
35
+ - Rouge1: 20.1093
36
+ - Rouge2: 8.0572
37
+ - Rougel: 16.4935
38
+ - Rougelsum: 17.9823
39
+ - Gen Len: 20.0
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 5e-05
59
+ - train_batch_size: 1
60
+ - eval_batch_size: 1
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 1.0
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
69
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
70
+ | 3.0567 | 0.08 | 5000 | 2.8864 | 18.9387 | 7.1014 | 15.4506 | 16.8377 | 19.9979 |
71
+ | 2.9285 | 0.17 | 10000 | 2.7800 | 19.8983 | 7.3258 | 16.0823 | 17.7019 | 20.0 |
72
+ | 2.9252 | 0.25 | 15000 | 2.7080 | 19.6623 | 7.4627 | 16.0153 | 17.4485 | 20.0 |
73
+ | 2.8123 | 0.33 | 20000 | 2.6585 | 19.7414 | 7.5251 | 15.8166 | 17.4668 | 20.0 |
74
+ | 2.7117 | 0.41 | 25000 | 2.6070 | 19.7661 | 7.7193 | 16.2795 | 17.7884 | 20.0 |
75
+ | 2.7131 | 0.5 | 30000 | 2.5616 | 19.6706 | 7.4229 | 15.7998 | 17.4324 | 20.0 |
76
+ | 2.6373 | 0.58 | 35000 | 2.5250 | 20.0155 | 7.6811 | 16.1231 | 17.7578 | 20.0 |
77
+ | 2.6785 | 0.66 | 40000 | 2.4977 | 20.0974 | 7.9578 | 16.543 | 18.0242 | 20.0 |
78
+ | 2.6265 | 0.75 | 45000 | 2.4701 | 19.994 | 7.9114 | 16.3501 | 17.8786 | 20.0 |
79
+ | 2.5833 | 0.83 | 50000 | 2.4441 | 19.9981 | 7.934 | 16.3033 | 17.8674 | 20.0 |
80
+ | 2.5579 | 0.91 | 55000 | 2.4251 | 20.0544 | 7.8966 | 16.3889 | 17.9491 | 20.0 |
81
+ | 2.5242 | 0.99 | 60000 | 2.4097 | 20.1093 | 8.0572 | 16.4935 | 17.9823 | 20.0 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.23.0.dev0
87
+ - Pytorch 1.12.0
88
+ - Datasets 2.4.0
89
+ - Tokenizers 0.12.1