--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - image-segmentation - vision - generated_from_trainer model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-plantorgans results: [] --- # beit-base-patch16-224-pt22k-ft22k-finetuned-plantorgans This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the jpodivin/plantorgans dataset. It achieves the following results on the evaluation set: - Loss: 1.2004 - Mean Iou: 0.0260 - Mean Accuracy: 0.0325 - Overall Accuracy: 0.0435 - Accuracy Void: nan - Accuracy Fruit: 0.1299 - Accuracy Leaf: 0.0 - Accuracy Flower: 0.0 - Accuracy Stem: 0.0001 - Iou Void: 0.0 - Iou Fruit: 0.1299 - Iou Leaf: 0.0 - Iou Flower: 0.0 - Iou Stem: 0.0001 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Void | Accuracy Fruit | Accuracy Leaf | Accuracy Flower | Accuracy Stem | Iou Void | Iou Fruit | Iou Leaf | Iou Flower | Iou Stem | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:--------------:|:-------------:|:---------------:|:-------------:|:--------:|:---------:|:--------:|:----------:|:--------:| | 1.0657 | 1.0 | 575 | 1.1178 | 0.0158 | 0.0197 | 0.0261 | nan | 0.0776 | 0.0 | 0.0 | 0.0012 | 0.0 | 0.0776 | 0.0 | 0.0 | 0.0012 | | 0.5398 | 2.0 | 1150 | 1.0816 | 0.0361 | 0.0451 | 0.0599 | nan | 0.1783 | 0.0000 | 0.0 | 0.0020 | 0.0 | 0.1783 | 0.0000 | 0.0 | 0.0020 | | 0.4794 | 3.0 | 1725 | 1.2122 | 0.0110 | 0.0138 | 0.0179 | nan | 0.0517 | 0.0003 | 0.0 | 0.0032 | 0.0 | 0.0517 | 0.0003 | 0.0 | 0.0032 | | 0.446 | 4.0 | 2300 | 1.3138 | 0.0114 | 0.0142 | 0.0189 | nan | 0.0562 | 0.0 | 0.0 | 0.0006 | 0.0 | 0.0562 | 0.0 | 0.0 | 0.0006 | | 0.4422 | 5.0 | 2875 | 1.2360 | 0.0005 | 0.0006 | 0.0006 | nan | 0.0012 | 0.0 | 0.0 | 0.0013 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.0013 | | 0.4183 | 6.0 | 3450 | 1.3598 | 0.0177 | 0.0221 | 0.0296 | nan | 0.0885 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0885 | 0.0 | 0.0 | 0.0 | | 0.3921 | 7.0 | 4025 | 1.2523 | 0.0267 | 0.0333 | 0.0446 | nan | 0.1333 | 0.0000 | 0.0 | 0.0 | 0.0 | 0.1333 | 0.0000 | 0.0 | 0.0 | | 0.3743 | 8.0 | 4600 | 1.3146 | 0.0401 | 0.0502 | 0.0670 | nan | 0.2002 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.2001 | 0.0 | 0.0 | 0.0005 | | 0.3695 | 9.0 | 5175 | 1.2873 | 0.0294 | 0.0368 | 0.0492 | nan | 0.1472 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.1471 | 0.0 | 0.0 | 0.0001 | | 0.3796 | 10.0 | 5750 | 1.2004 | 0.0260 | 0.0325 | 0.0435 | nan | 0.1299 | 0.0 | 0.0 | 0.0001 | 0.0 | 0.1299 | 0.0 | 0.0 | 0.0001 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0