fashxp's picture
updates
8852310
raw
history blame
1.12 kB
from typing import Dict, List, Any
from PIL import Image
from io import BytesIO
from transformers import pipeline
import base64
class EndpointHandler():
def __init__(self, path=""):
self.pipeline=pipeline("zero-shot-image-classification",model="openai/clip-vit-large-patch14-336")
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj:`string`)
parameters (:obj:)
Return:
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
"""
image_data = data.pop("inputs", data)
# decode base64 image to PIL
image = Image.open(BytesIO(base64.b64decode(image_data)))
parameters = data.pop("parameters", data)
candidate_labels = parameters['candidate_labels']
candidate_labels_array = list(map(str.strip, candidate_labels.split(',')))
# run prediction one image wit provided candiates
prediction = self.pipeline(images=[image], candidate_labels=candidate_labels_array)
return prediction[0]