File size: 3,419 Bytes
c114508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eb7453
 
 
 
 
 
 
 
c114508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eb7453
c114508
 
 
 
6eb7453
 
 
 
c114508
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
tags:
- generated_from_trainer
datasets:
- funsd-layoutlmv3
model-index:
- name: lilt-en-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lilt-en-funsd

This model is a fine-tuned version of [SCUT-DLVCLab/lilt-roberta-en-base](https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base) on the funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2479
- Answer: {'precision': 0.8644859813084113, 'recall': 0.9057527539779682, 'f1': 0.8846383741781233, 'number': 817}
- Header: {'precision': 0.6262626262626263, 'recall': 0.5210084033613446, 'f1': 0.5688073394495413, 'number': 119}
- Question: {'precision': 0.8877005347593583, 'recall': 0.924791086350975, 'f1': 0.9058663028649386, 'number': 1077}
- Overall Precision: 0.8657
- Overall Recall: 0.8932
- Overall F1: 0.8792
- Overall Accuracy: 0.8133

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                   | Header                                                                                                    | Question                                                                                                 | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.4245        | 10.53 | 200  | 0.9942          | {'precision': 0.8187845303867404, 'recall': 0.9069767441860465, 'f1': 0.8606271777003485, 'number': 817} | {'precision': 0.5178571428571429, 'recall': 0.48739495798319327, 'f1': 0.5021645021645021, 'number': 119} | {'precision': 0.8821396192203083, 'recall': 0.903435468895079, 'f1': 0.8926605504587157, 'number': 1077} | 0.8358            | 0.8803         | 0.8575     | 0.8150           |
| 0.0366        | 21.05 | 400  | 1.2479          | {'precision': 0.8644859813084113, 'recall': 0.9057527539779682, 'f1': 0.8846383741781233, 'number': 817} | {'precision': 0.6262626262626263, 'recall': 0.5210084033613446, 'f1': 0.5688073394495413, 'number': 119}  | {'precision': 0.8877005347593583, 'recall': 0.924791086350975, 'f1': 0.9058663028649386, 'number': 1077} | 0.8657            | 0.8932         | 0.8792     | 0.8133           |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2