File size: 2,051 Bytes
8d7c034 e54b3f9 8d7c034 da49600 8d7c034 e54b3f9 8d7c034 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model: medicalai/ClinicalBERT
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: ClinicalBERT-medical-text-classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ClinicalBERT-medical-text-classification
This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8610
- Accuracy: 0.235
- Precision: 0.2005
- Recall: 0.235
- F1: 0.2115
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 2.6094 | 1.0 | 250 | 2.4951 | 0.353 | 0.1617 | 0.353 | 0.2001 |
| 2.2177 | 2.0 | 500 | 1.9842 | 0.359 | 0.2967 | 0.359 | 0.2843 |
| 1.8458 | 3.0 | 750 | 1.8258 | 0.345 | 0.2843 | 0.345 | 0.2893 |
| 1.6992 | 4.0 | 1000 | 1.8139 | 0.302 | 0.2616 | 0.302 | 0.2729 |
| 1.4773 | 5.0 | 1250 | 1.8341 | 0.265 | 0.2458 | 0.265 | 0.2482 |
| 1.3138 | 6.0 | 1500 | 1.8610 | 0.235 | 0.2005 | 0.235 | 0.2115 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
|