--- base_model: nlpie/distil-clinicalbert tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distil-clinicalbert-medical-text-classification results: [] --- # distil-clinicalbert-medical-text-classification This model is a fine-tuned version of [nlpie/distil-clinicalbert](https://huggingface.co/nlpie/distil-clinicalbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8719 - Accuracy: 0.266 - Precision: 0.2357 - Recall: 0.266 - F1: 0.2427 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 2.5512 | 1.0 | 250 | 2.6302 | 0.335 | 0.1402 | 0.335 | 0.1911 | | 2.0609 | 2.0 | 500 | 2.1857 | 0.357 | 0.2240 | 0.357 | 0.2474 | | 1.9056 | 3.0 | 750 | 1.8964 | 0.321 | 0.2773 | 0.321 | 0.2812 | | 1.5646 | 4.0 | 1000 | 1.8117 | 0.323 | 0.3183 | 0.323 | 0.2949 | | 1.3789 | 5.0 | 1250 | 1.8869 | 0.302 | 0.2643 | 0.302 | 0.2701 | | 1.3189 | 6.0 | 1500 | 1.8719 | 0.266 | 0.2357 | 0.266 | 0.2427 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2