File size: 16,816 Bytes
87f4ccf d63951d 87f4ccf 8b82664 d63951d 87f4ccf ee5155f 0481eff ee5155f 0481eff 08d3f07 0481eff 08d3f07 0040773 87f4ccf 0481eff a798e0c 34471a7 a798e0c 018014a a798e0c 018014a a798e0c 018014a ee5155f a798e0c 018014a 0481eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
---
base_model: upstage/SOLAR-10.7B-Instruct-v1.0
tags:
- alignment-handbook
- generated_from_trainer
- UNA
- single-turn
model-index:
- name: UNA-SOLAR-10.7B-Instruct-v1.0
results: []
license: cc-by-nc-nd-4.0
language:
- en
library_name: transformers
---
# UNA: Uniform Neural Alignment
SFT Further:
- Linear
- 2e-5
Merges:
- Fan in: `0:2`
- Fan out: `-4:`
- Intermediary layers: `1/1/1/0/1/1/0/1/0/1/1/0/1/1/0` use the On/Off as a way of regularise.
## Quants
* [ggml-model-q5_k_m.gguf](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0/resolve/main/ggml-model-q5_k_m.gguf?download=true)
* [ggml-model-q6_k.gguf](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0/resolve/main/ggml-model-q6_k.gguf?download=true)
## Libraries:
- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
## Evals LM-Evaluation Harness
`mt-bench`:
```
Mode: single
Input file: data/mt_bench/model_judgment/gpt-4_single.jsonl
########## First turn ##########
score
model turn
gpt-4 1 8.95625
claude-v1 1 8.15000
gpt-3.5-turbo 1 8.07500
LUNA-SOLARkrautLM-Instruct 1 7.93750
UNA-SOLAR-10.7B-Instruct-v1.0 1 7.80625
vicuna-33b-v1.3 1 7.45625
wizardlm-30b 1 7.13125
tulu-30b 1 7.01875
vicuna-13b-v1.3 1 6.81250
guanaco-65b 1 6.78125
nous-hermes-13b 1 6.43125
alpaca-13b 1 4.97500
rwkv-4-raven-14b 1 4.74375
llama-13b 1 3.26250
########## Second turn ##########
score
model turn
gpt-4 2 9.025000
gpt-3.5-turbo 2 7.812500
claude-v1 2 7.650000
UNA-SOLAR-10.7B-Instruct-v1.0 2 7.237500
LUNA-SOLARkrautLM-Instruct 2 6.987500
wizardlm-30b 2 6.887500
vicuna-33b-v1.3 2 6.787500
guanaco-65b 2 6.037500
vicuna-13b-v1.3 2 5.962500
tulu-30b 2 5.850000
nous-hermes-13b 2 4.664557
alpaca-13b 2 4.087500
rwkv-4-raven-14b 2 3.225000
llama-13b 2 1.950000
########## Average ##########
score
model
gpt-4 8.990625
gpt-3.5-turbo 7.943750
claude-instant-v1 7.905660
claude-v1 7.900000
UNA-SOLAR-10.7B-Instruct-v1.0 7.521875
LUNA-SOLARkrautLM-Instruct 7.462500
vicuna-33b-v1.3 7.121875
wizardlm-30b 7.009375
Llama-2-70b-chat 6.856250
Llama-2-13b-chat 6.650000
guanaco-33b 6.528125
tulu-30b 6.434375
guanaco-65b 6.409375
oasst-sft-7-llama-30b 6.409375
palm-2-chat-bison-001 6.400000
mpt-30b-chat 6.393750
vicuna-13b-v1.3 6.387500
wizardlm-13b 6.353125
Llama-2-7b-chat 6.268750
vicuna-7b-v1.3 5.996875
baize-v2-13b 5.750000
nous-hermes-13b 5.553459
mpt-7b-chat 5.459119
gpt4all-13b-snoozy 5.452830
koala-13b 5.350000
mpt-30b-instruct 5.218750
falcon-40b-instruct 5.168750
h2ogpt-oasst-open-llama-13b 4.625000
alpaca-13b 4.531250
chatglm-6b 4.500000
oasst-sft-4-pythia-12b 4.318750
rwkv-4-raven-14b 3.984375
dolly-v2-12b 3.275000
fastchat-t5-3b 3.040625
stablelm-tuned-alpha-7b 2.753125
llama-13b 2.606250
```
`big-refactor` branch:
```
hf (pretrained=fblgit/UNA-SOLAR-10.7B-Instruct-v1.0), gen_kwargs: (None), limit: None, num_fewshot: 25, batch_size: auto (32)
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml |none | 25|acc |0.6954|± |0.0134|
| | |none | 25|acc_norm|0.7167|± |0.0132|
hf (pretrained=fblgit/UNA-SOLAR-10.7B-Instruct-v1.0), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: auto
|Tasks|Version| Filter |n-shot| Metric |Value| |Stderr|
|-----|-------|----------|-----:|-----------|----:|---|-----:|
|gsm8k|Yaml |get-answer| 5|exact_match|0.671|± |0.0129|
hf (pretrained=fblgit/UNA-SOLAR-10.7B-Instruct-v1.0), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto (64)
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
|--------------|-------|------|-----:|------|-----:|---|-----:|
|truthfulqa_mc2|Yaml |none | 0|acc |0.7297|_ |0.0149|
hf (pretrained=fblgit/UNA-SOLAR-10.7B-Instruct-v1.0), gen_kwargs: (None), limit: None, num_fewshot: 10, batch_size: auto (32)
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|---------|-------|------|-----:|--------|-----:|---|-----:|
|hellaswag|Yaml |none | 10|acc |0.7091|± |0.0045|
| | |none | 10|acc_norm|0.8821|± |0.0032|
hf (pretrained=fblgit/UNA-SOLAR-10.7B-Instruct-v1.0,dtype=float16), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto (32)
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|--------------|-------|------|-----:|----------|-----:|---|-----:|
|boolq |Yaml |none | 0|acc |0.8807|_ |0.0057|
|lambada_openai|Yaml |none | 0|perplexity|3.2452|_ |0.0778|
| | |none | 0|acc |0.7207|_ |0.0063|
|piqa |Yaml |none | 0|acc |0.8020|_ |0.0093|
| | |none | 0|acc_norm |0.8009|_ |0.0093|
|sciq |Yaml |none | 0|acc |0.9730|_ |0.0051|
| | |none | 0|acc_norm |0.9630|_ |0.0060|
|winogrande |Yaml |none | 0|acc |0.7577|_ |0.0120|
hf (pretrained=fblgit/UNA-SOLAR-10.7B-Instruct-v1.0,dtype=float16), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto (64)
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|--------|-------|------|-----:|--------|-----:|---|-----:|
|mathqa |Yaml |none | 0|acc |0.3474|_ |0.0087|
| | |none | 0|acc_norm|0.3568|_ |0.0088|
|pubmedqa|Yaml |none | 0|acc |0.5400|_ |0.0223|
hf (pretrained=fblgit/UNA-SOLAR-10.7B-Instruct-v1.0,dtype=float16), gen_kwargs: (), limit: None, num_fewshot: 0, batch_size: auto
| Tasks |Version|Filter|n-shot| Metric |Value | |Stderr|
|------------------------------------------------------|-------|------|-----:|-----------|-----:|---|-----:|
|bbh_fewshot |N/A |none | 0|exact_match|0.4660|_ |0.1771|
| - bbh_fewshot_boolean_expressions |Yaml |none | 0|exact_match|0.8160|_ |0.0246|
| - bbh_fewshot_causal_judgement |Yaml |none | 0|exact_match|0.4973|_ |0.0367|
| - bbh_fewshot_date_understanding |Yaml |none | 0|exact_match|0.4840|_ |0.0317|
| - bbh_fewshot_disambiguation_qa |Yaml |none | 0|exact_match|0.6520|_ |0.0302|
| - bbh_fewshot_dyck_languages |Yaml |none | 0|exact_match|0.2040|_ |0.0255|
| - bbh_fewshot_formal_fallacies |Yaml |none | 0|exact_match|0.5280|_ |0.0316|
| - bbh_fewshot_geometric_shapes |Yaml |none | 0|exact_match|0.3360|_ |0.0299|
| - bbh_fewshot_hyperbaton |Yaml |none | 0|exact_match|0.5520|_ |0.0315|
| - bbh_fewshot_logical_deduction_five_objects |Yaml |none | 0|exact_match|0.4520|_ |0.0315|
| - bbh_fewshot_logical_deduction_seven_objects |Yaml |none | 0|exact_match|0.3920|_ |0.0309|
| - bbh_fewshot_logical_deduction_three_objects |Yaml |none | 0|exact_match|0.6200|_ |0.0308|
| - bbh_fewshot_movie_recommendation |Yaml |none | 0|exact_match|0.6640|_ |0.0299|
| - bbh_fewshot_multistep_arithmetic_two |Yaml |none | 0|exact_match|0.0080|_ |0.0056|
| - bbh_fewshot_navigate |Yaml |none | 0|exact_match|0.6280|_ |0.0306|
| - bbh_fewshot_object_counting |Yaml |none | 0|exact_match|0.3960|_ |0.0310|
| - bbh_fewshot_penguins_in_a_table |Yaml |none | 0|exact_match|0.4726|_ |0.0415|
| - bbh_fewshot_reasoning_about_colored_objects |Yaml |none | 0|exact_match|0.5320|_ |0.0316|
| - bbh_fewshot_ruin_names |Yaml |none | 0|exact_match|0.5680|_ |0.0314|
| - bbh_fewshot_salient_translation_error_detection |Yaml |none | 0|exact_match|0.5480|_ |0.0315|
| - bbh_fewshot_snarks |Yaml |none | 0|exact_match|0.5169|_ |0.0376|
| - bbh_fewshot_sports_understanding |Yaml |none | 0|exact_match|0.8320|_ |0.0237|
| - bbh_fewshot_temporal_sequences |Yaml |none | 0|exact_match|0.5520|_ |0.0315|
| - bbh_fewshot_tracking_shuffled_objects_five_objects |Yaml |none | 0|exact_match|0.1480|_ |0.0225|
| - bbh_fewshot_tracking_shuffled_objects_seven_objects|Yaml |none | 0|exact_match|0.1720|_ |0.0239|
| - bbh_fewshot_tracking_shuffled_objects_three_objects|Yaml |none | 0|exact_match|0.2760|_ |0.0283|
| - bbh_fewshot_web_of_lies |Yaml |none | 0|exact_match|0.4760|_ |0.0316|
| - bbh_fewshot_word_sorting |Yaml |none | 0|exact_match|0.2840|_ |0.0286|
| Groups |Version|Filter|n-shot| Metric |Value| |Stderr|
|-----------|-------|------|-----:|-----------|----:|---|-----:|
|bbh_fewshot|N/A |none | 0|exact_match|0.466|_ |0.1771|
hf (pretrained=fblgit/UNA-SOLAR-10.7B-Instruct-v1.0), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: auto (16)
| Tasks |Version|Filter|n-shot|Metric|Value | |Stderr|
|---------------------------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu |N/A |none | 0|acc |0.6513|± |0.1221|
| - humanities |N/A |none | 5|acc |0.6077|± |0.1185|
| - formal_logic |Yaml |none | 5|acc |0.4444|± |0.0444|
| - high_school_european_history |Yaml |none | 5|acc |0.8121|± |0.0305|
| - high_school_us_history |Yaml |none | 5|acc |0.8431|± |0.0255|
| - high_school_world_history |Yaml |none | 5|acc |0.8523|± |0.0231|
| - international_law |Yaml |none | 5|acc |0.7851|± |0.0375|
| - jurisprudence |Yaml |none | 5|acc |0.7870|± |0.0396|
| - logical_fallacies |Yaml |none | 5|acc |0.7546|± |0.0338|
| - moral_disputes |Yaml |none | 5|acc |0.7370|± |0.0237|
| - moral_scenarios |Yaml |none | 5|acc |0.4101|± |0.0164|
| - philosophy |Yaml |none | 5|acc |0.7170|± |0.0256|
| - prehistory |Yaml |none | 5|acc |0.7840|± |0.0229|
| - professional_law |Yaml |none | 5|acc |0.4941|± |0.0128|
| - world_religions |Yaml |none | 5|acc |0.7895|± |0.0313|
| - other |N/A |none | 5|acc |0.7116|± |0.0939|
| - business_ethics |Yaml |none | 5|acc |0.7600|± |0.0429|
| - clinical_knowledge |Yaml |none | 5|acc |0.6792|± |0.0287|
| - college_medicine |Yaml |none | 5|acc |0.6590|± |0.0361|
| - global_facts |Yaml |none | 5|acc |0.3400|± |0.0476|
| - human_aging |Yaml |none | 5|acc |0.6816|± |0.0313|
| - management |Yaml |none | 5|acc |0.8350|± |0.0368|
| - marketing |Yaml |none | 5|acc |0.8547|± |0.0231|
| - medical_genetics |Yaml |none | 5|acc |0.7000|± |0.0461|
| - miscellaneous |Yaml |none | 5|acc |0.8020|± |0.0142|
| - nutrition |Yaml |none | 5|acc |0.7418|± |0.0251|
| - professional_accounting |Yaml |none | 5|acc |0.5071|± |0.0298|
| - professional_medicine |Yaml |none | 5|acc |0.7500|± |0.0263|
| - virology |Yaml |none | 5|acc |0.5843|± |0.0384|
| - social_sciences |N/A |none | 5|acc |0.7537|± |0.0681|
| - econometrics |Yaml |none | 5|acc |0.5000|± |0.0470|
| - high_school_geography |Yaml |none | 5|acc |0.8586|± |0.0248|
| - high_school_government_and_politics|Yaml |none | 5|acc |0.9016|± |0.0215|
| - high_school_macroeconomics |Yaml |none | 5|acc |0.6615|± |0.0240|
| - high_school_microeconomics |Yaml |none | 5|acc |0.7311|± |0.0288|
| - high_school_psychology |Yaml |none | 5|acc |0.8404|± |0.0157|
| - human_sexuality |Yaml |none | 5|acc |0.7328|± |0.0388|
| - professional_psychology |Yaml |none | 5|acc |0.6814|± |0.0189|
| - public_relations |Yaml |none | 5|acc |0.6909|± |0.0443|
| - security_studies |Yaml |none | 5|acc |0.7469|± |0.0278|
| - sociology |Yaml |none | 5|acc |0.8308|± |0.0265|
| - us_foreign_policy |Yaml |none | 5|acc |0.8900|± |0.0314|
| - stem |N/A |none | 5|acc |0.5569|± |0.1380|
| - abstract_algebra |Yaml |none | 5|acc |0.4100|± |0.0494|
| - anatomy |Yaml |none | 5|acc |0.6222|± |0.0419|
| - astronomy |Yaml |none | 5|acc |0.7368|± |0.0358|
| - college_biology |Yaml |none | 5|acc |0.8056|± |0.0331|
| - college_chemistry |Yaml |none | 5|acc |0.4700|± |0.0502|
| - college_computer_science |Yaml |none | 5|acc |0.5100|± |0.0502|
| - college_mathematics |Yaml |none | 5|acc |0.2800|± |0.0451|
| - college_physics |Yaml |none | 5|acc |0.3431|± |0.0472|
| - computer_security |Yaml |none | 5|acc |0.7400|± |0.0441|
| - conceptual_physics |Yaml |none | 5|acc |0.6340|± |0.0315|
| - electrical_engineering |Yaml |none | 5|acc |0.6000|± |0.0408|
| - elementary_mathematics |Yaml |none | 5|acc |0.4815|± |0.0257|
| - high_school_biology |Yaml |none | 5|acc |0.8032|± |0.0226|
| - high_school_chemistry |Yaml |none | 5|acc |0.4877|± |0.0352|
| - high_school_computer_science |Yaml |none | 5|acc |0.7200|± |0.0451|
| - high_school_mathematics |Yaml |none | 5|acc |0.3815|± |0.0296|
| - high_school_physics |Yaml |none | 5|acc |0.3576|± |0.0391|
| - high_school_statistics |Yaml |none | 5|acc |0.5602|± |0.0339|
| - machine_learning |Yaml |none | 5|acc |0.4643|± |0.0473|
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|------------------|-------|------|-----:|------|-----:|---|-----:|
|mmlu |N/A |none | 0|acc |0.6513|± |0.1221|
| - humanities |N/A |none | 5|acc |0.6077|± |0.1185|
| - other |N/A |none | 5|acc |0.7116|± |0.0939|
| - social_sciences|N/A |none | 5|acc |0.7537|± |0.0681|
| - stem |N/A |none | 5|acc |0.5569|± |0.1380|
```
## Citations
to [Upstage.AI](https://huggingface.co/upstage) for its awesome base model, this is merely a UNA of it. It can only refine what its already in there :)
If you find UNA-SOLAR useful, cite and support the authors. |