File size: 5,124 Bytes
c422045 e1cdc5b 63b699f c422045 e1cdc5b 2ff0836 a4e85da bfbc812 2ff0836 e1cdc5b 2ff0836 e1cdc5b 2ff0836 e1cdc5b 2ff0836 e1cdc5b 2ff0836 63b699f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
---
license: apache-2.0
tags:
- UNA
- simple-math
- juanako
base_model: abacusai/Smaug-34B-v0.1
datasets:
- fblgit/simple-math
- jondurbin/bagel-v0.3
model-index:
- name: UNA-SimpleSmaug-34b-v1beta
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 74.57
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.74
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 76.68
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 70.17
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.82
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 72.48
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta
name: Open LLM Leaderboard
---
# UNA-SimpleSmaug-34b-v1beta
Scoring 04-February-2024 #1 34B model, outperforming its original base model Smaug-34B-v0.1 with `77.41` 😎
Oh, btw.. this one went thru SFT so the abacus inside Smaug is back to normal.. so you can further train/dpo him .. RESET!
![UNA](https://huggingface.co/fblgit/UNA-SimpleSmaug-34b-v1beta/resolve/main/unasimple.png)
Applied UNA only on the Attention, not on the MLP's
* Is based on Smaug
* SimpleMath dataset
* It was trained on Axolotl
## Experiment
The thing here is to understand whats the impact of SimpleMath applied at the attention layer during a SFT session and how it impacts on the neural network overall.
Results: Improving mathematican and reasoning capabilities without degrading and presserving previous training sessions.
## Evals
Pending, but so far this one
```
| Task |Version| Metric |Value |
|-------------|------:|--------|----------------:|
|arc_challenge| HF|acc_norm| 0.7457337883959 |
|gsm8k | HF|acc | 0.7247915087187 |
|mmlu | HF|acc | 0.7649553475572 |
|mmlu | HF|acc_norm| 0.7681713551647 |
|hellaswag | HF|acc_norm| 0.8673571001792 |
|truthfulqa | HF|mc2 | 0.7016557407771 |
|winogrande | HF|acc | 0.8382004735595 |
|------------------------------------------------|
```
Increasing GSM, MMLU, ARC, WINO.
## Citations
To abacusai for making Smaug-34B, the Bagel, and all the magic behind the base model.
If you use the model, provide citation even for merges or anything.
And enjoy our ModelSimilarities tool detector https://github.com/fblgit/model-similarity
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNA-SimpleSmaug-34b-v1beta)
| Metric |Value|
|---------------------------------|----:|
|Avg. |77.41|
|AI2 Reasoning Challenge (25-Shot)|74.57|
|HellaSwag (10-Shot) |86.74|
|MMLU (5-Shot) |76.68|
|TruthfulQA (0-shot) |70.17|
|Winogrande (5-shot) |83.82|
|GSM8k (5-shot) |72.48|
|