File size: 4,766 Bytes
c2f4cad ce9b1e9 c2f4cad ce9b1e9 c2f4cad ce9b1e9 c2f4cad ce9b1e9 c2f4cad ce9b1e9 c2f4cad ce9b1e9 c2f4cad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
---
license: other
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
datasets:
- Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1
base_model:
- Qwen/Qwen2.5-7B-Instruct
library_name: transformers
tags:
- generated_from_trainer
language:
- en
---
# cybertron-v4-qw7B-MGS
**UNA IS BACK** Cybertron v4 UNA-MGS, Based on the amazing Qwen2.5 7B
![cybertron-v4-MGS](https://huggingface.co/fblgit/cybertron-v4-qw7B-MGS/resolve/main/cybertron_v4MGS.png)
This special edition went thru UNA at MLP layers just like [miniclaus-1.5B](https://huggingface.co/fblgit/miniclaus-qw1.5B-UNAMGS)
Here we use our novel approach called `MGS`. Its up to you to figure out what it means. On top of that we used `UNA: Uniform Neural Alignment`
Cybertron V4 went thru SFT with `MGS & UNA` over `Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1` dataset.
## Quantz
Soon..
## MGS & UNA & Details
* MGS, among other things.. a strategy of tackling corpora forgetful. `1+1 = 2 and not 3`
* UNA, among other things.. orthogonal approach for neural uniformit. `1+1 = 2 obviously`
We also followed https://arxiv.org/pdf/2410.21228 insights.
## Training procedure
1 Epoch as usual.
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
```
datasets:
- path: Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1
split: train
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
roles:
user: ["human", "user"]
assistant: ["gpt", "assistant", "ai"]
system: ["system"]
```
### Training hyperparameters
The following hyperparameters were used during training:
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7824 | 0.0003 | 1 | 0.5555 |
| 0.5489 | 0.0503 | 144 | 0.4848 |
| 0.5348 | 0.1006 | 288 | 0.4732 |
| 0.5256 | 0.1509 | 432 | 0.4670 |
| 0.5172 | 0.2012 | 576 | 0.4621 |
| 0.4882 | 0.2515 | 720 | 0.4578 |
| 0.4848 | 0.3018 | 864 | 0.4550 |
| 0.4678 | 0.3520 | 1008 | 0.4522 |
| 0.4686 | 0.4023 | 1152 | 0.4502 |
| 0.4775 | 0.4526 | 1296 | 0.4474 |
| 0.4464 | 0.5029 | 1440 | 0.4454 |
| 0.4772 | 0.5532 | 1584 | 0.4438 |
| 0.4546 | 0.6035 | 1728 | 0.4425 |
| 0.4661 | 0.6538 | 1872 | 0.4411 |
| 0.4569 | 0.7041 | 2016 | 0.4399 |
| 0.4529 | 0.7544 | 2160 | 0.4390 |
| 0.4409 | 0.8047 | 2304 | 0.4380 |
| 0.4405 | 0.8550 | 2448 | 0.4370 |
| 0.4642 | 0.9053 | 2592 | 0.4363 |
| 0.4566 | 0.9556 | 2736 | 0.4359 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.45.2 (UNA & MGS patch)
- Pytorch 2.3.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
## Citations
```
@misc{thebeagle-v2,
title={TheBeagle v2: MGS},
author={Xavier Murias},
year={2024},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/fblgit/TheBeagle-v2beta-32B-MGS}},
}
@misc{qwen2.5,
title = {Qwen2.5: A Party of Foundation Models},
url = {https://qwenlm.github.io/blog/qwen2.5/},
author = {Qwen Team},
month = {September},
year = {2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}
```
|