File size: 4,766 Bytes
c2f4cad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce9b1e9
c2f4cad
 
 
 
ce9b1e9
c2f4cad
ce9b1e9
 
c2f4cad
ce9b1e9
c2f4cad
 
ce9b1e9
c2f4cad
ce9b1e9
c2f4cad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
license: other
license_name: qwen
license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
datasets:
- Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1
base_model:
- Qwen/Qwen2.5-7B-Instruct
library_name: transformers
tags:
- generated_from_trainer
language:
- en
---

# cybertron-v4-qw7B-MGS

**UNA IS BACK** Cybertron v4 UNA-MGS, Based on the amazing Qwen2.5 7B

![cybertron-v4-MGS](https://huggingface.co/fblgit/cybertron-v4-qw7B-MGS/resolve/main/cybertron_v4MGS.png)

This special edition went thru UNA at MLP layers just like [miniclaus-1.5B](https://huggingface.co/fblgit/miniclaus-qw1.5B-UNAMGS)

Here we use our novel approach called `MGS`. Its up to you to figure out what it means. On top of that we used `UNA: Uniform Neural Alignment`

Cybertron V4 went thru SFT with `MGS & UNA`  over `Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1` dataset.

## Quantz
Soon..

## MGS & UNA & Details

* MGS, among other things.. a strategy of tackling corpora forgetful. `1+1 = 2 and not 3`
* UNA, among other things.. orthogonal approach for neural uniformit. `1+1 = 2 obviously`

We also followed https://arxiv.org/pdf/2410.21228 insights.

## Training procedure

1 Epoch as usual.

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
```
datasets:
  - path: Magpie-Align/Magpie-Qwen2.5-Pro-1M-v0.1
    split: train
    type: chat_template
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    roles:
      user: ["human", "user"]
      assistant: ["gpt", "assistant", "ai"]
      system: ["system"]
```

### Training hyperparameters

The following hyperparameters were used during training:
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7824        | 0.0003 | 1    | 0.5555          |
| 0.5489        | 0.0503 | 144  | 0.4848          |
| 0.5348        | 0.1006 | 288  | 0.4732          |
| 0.5256        | 0.1509 | 432  | 0.4670          |
| 0.5172        | 0.2012 | 576  | 0.4621          |
| 0.4882        | 0.2515 | 720  | 0.4578          |
| 0.4848        | 0.3018 | 864  | 0.4550          |
| 0.4678        | 0.3520 | 1008 | 0.4522          |
| 0.4686        | 0.4023 | 1152 | 0.4502          |
| 0.4775        | 0.4526 | 1296 | 0.4474          |
| 0.4464        | 0.5029 | 1440 | 0.4454          |
| 0.4772        | 0.5532 | 1584 | 0.4438          |
| 0.4546        | 0.6035 | 1728 | 0.4425          |
| 0.4661        | 0.6538 | 1872 | 0.4411          |
| 0.4569        | 0.7041 | 2016 | 0.4399          |
| 0.4529        | 0.7544 | 2160 | 0.4390          |
| 0.4409        | 0.8047 | 2304 | 0.4380          |
| 0.4405        | 0.8550 | 2448 | 0.4370          |
| 0.4642        | 0.9053 | 2592 | 0.4363          |
| 0.4566        | 0.9556 | 2736 | 0.4359          |

### Framework versions

- PEFT 0.13.2
- Transformers 4.45.2 (UNA & MGS patch)
- Pytorch 2.3.0+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1

## Citations
```
@misc{thebeagle-v2,
  title={TheBeagle v2: MGS}, 
  author={Xavier Murias},
  year={2024},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
  howpublished = {\url{https://huggingface.co/fblgit/TheBeagle-v2beta-32B-MGS}},
}

@misc{qwen2.5,
    title = {Qwen2.5: A Party of Foundation Models},
    url = {https://qwenlm.github.io/blog/qwen2.5/},
    author = {Qwen Team},
    month = {September},
    year = {2024}
}

@article{qwen2,
      title={Qwen2 Technical Report}, 
      author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
      journal={arXiv preprint arXiv:2407.10671},
      year={2024}
}
```