Text Generation
Transformers
Safetensors
mistral
alignment-handbook
Generated from Trainer
text-generation-inference
Inference Endpoints
File size: 12,796 Bytes
0902bde
91322ed
 
 
 
 
 
 
 
 
 
0902bde
91322ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
---
base_model: fblgit/zephyr-lora-dpo-b1
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: juanako-7b-v1
  results: []
license: artistic-2.0
---

# juanako-7b-v1

This model is a fine-tuned version of [fblgit/zephyr-lora-dpo-b1](https://huggingface.co/fblgit/zephyr-lora-dpo-b1) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4594
- Rewards/chosen: -1.1095
- Rewards/rejected: -2.3132
- Rewards/accuracies: 0.7964
- Rewards/margins: 1.2037
- Logps/rejected: -220.0052
- Logps/chosen: -217.5506
- Logits/rejected: -2.5535
- Logits/chosen: -2.7973

## Model description

**It seems to outperforms the original Zephyr in most of the tasks.**

I trained Juanako with the same datasets and trainer from [alignment-handbook/zephyr-7b-sft-lora](https://huggingface.co/alignment-handbook/zephyr-7b-sft-lora) 
* 1 epoch on DPO with transformers-UNA, the result is [fblgit/zephyr-lora-dpo-b1](https://huggingface.co/fblgit/zephyr-lora-dpo-b1) after merge using FastChat converter.
* finally 1 epoch on DPO with transformers-UNA to [fblgit/zephyr-lora-dpo-b1](https://huggingface.co/fblgit/zephyr-lora-dpo-b1).

Some other experiments were performed as well to test transformers-UNA capabilities on diverse scenarios and models.

**This is a complete version of the model, the result of converting LoRa's**

## Intended uses & limitations

Research purposes.

## Training and evaluation data

alignment-handbook DPO with UNA on top of the SFT lora.

### Evaluation lm-evaluation-harness
#### 0-Shot
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 0, batch_size: 8
```
|       Tasks       |Version|Filter|  Metric   | Value |   |Stderr|
|-------------------|-------|------|-----------|------:|---|-----:|
|arc_challenge      |Yaml   |none  |acc        | 0.5691|±  |0.0145|
|                   |       |none  |acc_norm   | 0.6041|±  |0.0143|
|arc_easy           |Yaml   |none  |acc        | 0.8363|±  |0.0076|
|                   |       |none  |acc_norm   | 0.8161|±  |0.0079|
|hellaswag          |Yaml   |none  |acc        | 0.6554|±  |0.0047|
|                   |       |none  |acc_norm   | 0.8411|±  |0.0036|
|boolq              |Yaml   |none  |acc        | 0.8355|±  |0.0065|
|lambada            |N/A    |none  |perplexity | 3.3607|±  |0.1398|
|                   |       |none  |acc        | 0.7309|±  |0.0137|
|piqa               |Yaml   |none  |acc        | 0.8194|±  |0.0090|
|                   |       |none  |acc_norm   | 0.8335|±  |0.0087|
|sciq               |Yaml   |none  |acc        | 0.9480|±  |0.0070|
|                   |       |none  |acc_norm   | 0.8960|±  |0.0097|
|truthfulqa         |N/A    |none  |bleu_max   |26.0803|±  |0.6528|
| - truthfulqa_mc1  |Yaml   |none  |acc        | 0.4198|±  |0.0173|
| - truthfulqa_mc2  |Yaml   |none  |acc        | 0.5847|±  |0.0153|
|winogrande         |Yaml   |none  |acc        | 0.7609|±  |0.0120|

#### 1-Shot
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 1, batch_size: 8
```
|       Tasks       |Version|Filter|  Metric   | Value |   |Stderr|
|-------------------|-------|------|-----------|------:|---|-----:|
|arc_challenge      |Yaml   |none  |acc        | 0.6084|±  |0.0143|
|                   |       |none  |acc_norm   | 0.6357|±  |0.0141|
|arc_easy           |Yaml   |none  |acc        | 0.8645|±  |0.0070|
|                   |       |none  |acc_norm   | 0.8645|±  |0.0070|
|hellaswag          |Yaml   |none  |acc        | 0.6475|±  |0.0048|
|                   |       |none  |acc_norm   | 0.8372|±  |0.0037|
|boolq              |Yaml   |none  |acc        | 0.8609|±  |0.0061|
|lambada            |N/A    |none  |perplexity | 3.5484|±  |0.1034|
|                   |       |none  |acc        | 0.7207|±  |0.0107|
|piqa               |Yaml   |none  |acc        | 0.8259|±  |0.0088|
|                   |       |none  |acc_norm   | 0.8384|±  |0.0086|
|sciq               |Yaml   |none  |acc        | 0.9730|±  |0.0051|
|                   |       |none  |acc_norm   | 0.9740|±  |0.0050|
|truthfulqa         |N/A    |none  |bleu_max   |18.9814|±  |0.4805|
|                   |       |none  |acc        | 0.4856|±  |0.0521|
| - truthfulqa_mc1  |Yaml   |none  |acc        | 0.4333|±  |0.0173|
| - truthfulqa_mc2  |Yaml   |none  |acc        | 0.5903|±  |0.0153|
|winogrande         |Yaml   |none  |acc        | 0.7609|±  |0.0120|

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 12
- gradient_accumulation_steps: 16
- total_train_batch_size: 192
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.4966        | 0.15  | 50   | 0.4893          | -1.1759        | -2.2914          | 0.7485             | 1.1155          | -219.7872      | -218.2148    | -2.5450         | -2.7884       |
| 0.4522        | 0.31  | 100  | 0.4808          | -0.8099        | -1.8893          | 0.7784             | 1.0794          | -215.7659      | -214.5544    | -2.5644         | -2.8095       |
| 0.5048        | 0.46  | 150  | 0.4706          | -1.0526        | -2.1412          | 0.7725             | 1.0887          | -218.2852      | -216.9814    | -2.5638         | -2.8089       |
| 0.4853        | 0.62  | 200  | 0.4640          | -1.0787        | -2.2821          | 0.7725             | 1.2034          | -219.6941      | -217.2426    | -2.5460         | -2.7891       |
| 0.4639        | 0.77  | 250  | 0.4636          | -1.2348        | -2.4583          | 0.8084             | 1.2235          | -221.4559      | -218.8034    | -2.5533         | -2.7970       |
| 0.4634        | 0.93  | 300  | 0.4601          | -1.1370        | -2.3243          | 0.7964             | 1.1873          | -220.1163      | -217.8257    | -2.5540         | -2.7977       |
| -             | 1.00  | 300  | 0.4594          | -1.1095        | -2.3132          | 0.7964             | 1.2037          | -220.0052      | -217.5506    | -2.5535         | -2.7973       |

### Framework versions

- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1

## MMLU Results

#### 1-Shot
```
hf (pretrained=fblgit/juanako-7b-v1,load_in_4bit=False,dtype=float16), limit: None, num_fewshot: 1, batch_size: 1
```
|                 Tasks                 |Version|Filter|Metric|Value |   |Stderr|
|---------------------------------------|-------|------|------|-----:|---|-----:|
|mmlu                                   |N/A    |none  |acc   |0.6085|±  |0.1321|
| - humanities                          |N/A    |none  |acc   |0.5405|±  |0.1478|
|  - formal_logic                       |Yaml   |none  |acc   |0.4206|±  |0.0442|
|  - high_school_european_history       |Yaml   |none  |acc   |0.7576|±  |0.0335|
|  - high_school_us_history             |Yaml   |none  |acc   |0.8186|±  |0.0270|
|  - high_school_world_history          |Yaml   |none  |acc   |0.7890|±  |0.0266|
|  - international_law                  |Yaml   |none  |acc   |0.7438|±  |0.0398|
|  - jurisprudence                      |Yaml   |none  |acc   |0.8056|±  |0.0383|
|  - logical_fallacies                  |Yaml   |none  |acc   |0.7791|±  |0.0326|
|  - moral_disputes                     |Yaml   |none  |acc   |0.7023|±  |0.0246|
|  - moral_scenarios                    |Yaml   |none  |acc   |0.2145|±  |0.0137|
|  - philosophy                         |Yaml   |none  |acc   |0.7074|±  |0.0258|
|  - prehistory                         |Yaml   |none  |acc   |0.7377|±  |0.0245|
|  - professional_law                   |Yaml   |none  |acc   |0.4361|±  |0.0127|
|  - world_religions                    |Yaml   |none  |acc   |0.8421|±  |0.0280|
| - other                               |N/A    |none  |acc   |0.6894|±  |0.1091|
|  - business_ethics                    |Yaml   |none  |acc   |0.5600|±  |0.0499|
|  - clinical_knowledge                 |Yaml   |none  |acc   |0.6981|±  |0.0283|
|  - college_medicine                   |Yaml   |none  |acc   |0.6185|±  |0.0370|
|  - global_facts                       |Yaml   |none  |acc   |0.3300|±  |0.0473|
|  - human_aging                        |Yaml   |none  |acc   |0.6726|±  |0.0315|
|  - management                         |Yaml   |none  |acc   |0.8058|±  |0.0392|
|  - marketing                          |Yaml   |none  |acc   |0.8419|±  |0.0239|
|  - medical_genetics                   |Yaml   |none  |acc   |0.7200|±  |0.0451|
|  - miscellaneous                      |Yaml   |none  |acc   |0.8033|±  |0.0142|
|  - nutrition                          |Yaml   |none  |acc   |0.7288|±  |0.0255|
|  - professional_accounting            |Yaml   |none  |acc   |0.4929|±  |0.0298|
|  - professional_medicine              |Yaml   |none  |acc   |0.6801|±  |0.0283|
|  - virology                           |Yaml   |none  |acc   |0.5000|±  |0.0389|
| - social_sciences                     |N/A    |none  |acc   |0.7195|±  |0.0676|
|  - econometrics                       |Yaml   |none  |acc   |0.5000|±  |0.0470|
|  - high_school_geography              |Yaml   |none  |acc   |0.7879|±  |0.0291|
|  - high_school_government_and_politics|Yaml   |none  |acc   |0.8601|±  |0.0250|
|  - high_school_macroeconomics         |Yaml   |none  |acc   |0.6231|±  |0.0246|
|  - high_school_microeconomics         |Yaml   |none  |acc   |0.6471|±  |0.0310|
|  - high_school_psychology             |Yaml   |none  |acc   |0.8000|±  |0.0171|
|  - human_sexuality                    |Yaml   |none  |acc   |0.7557|±  |0.0377|
|  - professional_psychology            |Yaml   |none  |acc   |0.6552|±  |0.0192|
|  - public_relations                   |Yaml   |none  |acc   |0.6636|±  |0.0453|
|  - security_studies                   |Yaml   |none  |acc   |0.7184|±  |0.0288|
|  - sociology                          |Yaml   |none  |acc   |0.8358|±  |0.0262|
|  - us_foreign_policy                  |Yaml   |none  |acc   |0.8500|±  |0.0359|
| - stem                                |N/A    |none  |acc   |0.5217|±  |0.1149|
|  - abstract_algebra                   |Yaml   |none  |acc   |0.3000|±  |0.0461|
|  - anatomy                            |Yaml   |none  |acc   |0.6222|±  |0.0419|
|  - astronomy                          |Yaml   |none  |acc   |0.6711|±  |0.0382|
|  - college_biology                    |Yaml   |none  |acc   |0.7361|±  |0.0369|
|  - college_chemistry                  |Yaml   |none  |acc   |0.4400|±  |0.0499|
|  - college_computer_science           |Yaml   |none  |acc   |0.5000|±  |0.0503|
|  - college_mathematics                |Yaml   |none  |acc   |0.3100|±  |0.0465|
|  - college_physics                    |Yaml   |none  |acc   |0.4902|±  |0.0497|
|  - computer_security                  |Yaml   |none  |acc   |0.7100|±  |0.0456|
|  - conceptual_physics                 |Yaml   |none  |acc   |0.5362|±  |0.0326|
|  - electrical_engineering             |Yaml   |none  |acc   |0.5862|±  |0.0410|
|  - elementary_mathematics             |Yaml   |none  |acc   |0.4365|±  |0.0255|
|  - high_school_biology                |Yaml   |none  |acc   |0.7129|±  |0.0257|
|  - high_school_chemistry              |Yaml   |none  |acc   |0.5074|±  |0.0352|
|  - high_school_computer_science       |Yaml   |none  |acc   |0.6500|±  |0.0479|
|  - high_school_mathematics            |Yaml   |none  |acc   |0.3259|±  |0.0286|
|  - high_school_physics                |Yaml   |none  |acc   |0.3709|±  |0.0394|
|  - high_school_statistics             |Yaml   |none  |acc   |0.5139|±  |0.0341|
|  - machine_learning                   |Yaml   |none  |acc   |0.5089|±  |0.0475|

|      Groups      |Version|Filter|Metric|Value |   |Stderr|
|------------------|-------|------|------|-----:|---|-----:|
|mmlu              |N/A    |none  |acc   |0.6085|±  |0.1321|
| - humanities     |N/A    |none  |acc   |0.5405|±  |0.1478|
| - other          |N/A    |none  |acc   |0.6894|±  |0.1091|
| - social_sciences|N/A    |none  |acc   |0.7195|±  |0.0676|
| - stem           |N/A    |none  |acc   |0.5217|±  |0.1149|