--- tags: - ultralyticsplus - yolov8 - ultralytics - yolo - vision - image-segmentation - pytorch library_name: ultralytics library_version: 8.0.6 inference: false model-index: - name: fcakyon/test-model results: - task: type: image-segmentation metrics: - type: precision # since mAP@0.5 is not available on hf.co/metrics value: 0.63311 # min: 0.0 - max: 1.0 name: mAP@0.5(box) - type: precision # since mAP@0.5 is not available on hf.co/metrics value: 0.60214 # min: 0.0 - max: 1.0 name: mAP@0.5(mask) ---
fcakyon/test-model
### Supported Labels ``` ['Cracks-and-spalling', 'object'] ``` ### How to use - Install [ultralytics](https://github.com/ultralytics/ultralytics) and [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): ```bash pip install -U ultralytics ultralyticsplus ``` - Load model and perform prediction: ```python from ultralyticsplus import YOLO, render_model_output # load model model = YOLO('fcakyon/test-model') # set model parameters model.overrides['conf'] = 0.25 # NMS confidence threshold model.overrides['iou'] = 0.45 # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 1000 # maximum number of detections per image # set image image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference for result in model.predict(image, return_outputs=True): print(result["det"]) # [[x1, y1, x2, y2, conf, class]] print(result["segment"]) # [segmentation mask] render = render_model_output(model=model, image=image, model_output=result) render.show() ```