fdurant's picture
fix: better logging
fe7831c
from typing import Any, Dict, List
from colbert.infra import ColBERTConfig
from colbert.modeling.checkpoint import Checkpoint
import torch
import logging
logger = logging.getLogger(__name__)
# Hardcoded, I know
MODEL = "fdurant/colbert-xm-for-inference-api"
class EndpointHandler():
def __init__(self, path=""):
self._config = ColBERTConfig(
# Defaults copied from https://github.com/datastax/ragstack-ai/blob/main/libs/colbert/ragstack_colbert/colbert_embedding_model.py
doc_maxlen=512, # Maximum number of tokens for document chunks. Should equal the chunk_size.
nbits=2, # The number bits that each dimension encodes to.
kmeans_niters=4, # Number of iterations for k-means clustering during quantization.
nranks=-1, # Number of ranks (processors) to use for distributed computing; -1 uses all available CPUs/GPUs.
checkpoint=MODEL, # Path to the model checkpoint.
)
self._checkpoint = Checkpoint(self._config.checkpoint, colbert_config=self._config, verbose=3)
def __call__(self, data: Any) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str`)
Return:
A :obj:`list` : will be serialized and returned.
When the input is a single query string, the returned list will contain a single dictionary with:
- input (:obj: `str`) : The input query.
- query_embedding (:obj: `list`) : The query embedding of shape (1, 32, 128).
When the input is a batch (= list) of chunk strings, the returned list will contain a dictionary for each chunk:
- input (:obj: `str`) : The input chunk.
- chunk_embedding (:obj: `list`) : The chunk embedding of shape (1, num_tokens, 128)
- token_ids (:obj: `list`) : The token ids.
- token_list (:obj: `list`) : The token list.
"""
inputs = data["inputs"]
texts = []
if isinstance(inputs, str):
texts = [inputs]
elif isinstance(inputs, list) and all(isinstance(text, str) for text in inputs):
texts = inputs
else:
raise ValueError("Invalid input data format")
with torch.inference_mode():
if len(texts) == 1:
# It's a query
logger.info(f"Received query of 1 text with {len(texts[0])} characters and {len(texts[0].split())} words")
embedding = self._checkpoint.queryFromText(
queries=texts,
full_length_search=False, # Indicates whether to encode the query for a full-length search.
)
logger.info(f"Query embedding shape: {embedding.shape}")
return [
{"input": inputs, "query_embedding": embedding.tolist()[0]}
]
elif len(texts) > 1:
# It's a batch of chunks
logger.info(f"Received batch of {len(texts)} chunks")
for i, text in enumerate(texts):
logger.info(f"Chunk {i} has {len(text)} characters and {len(text.split())} words")
embeddings, token_id_lists = self._checkpoint.docFromText(
docs=texts,
bsize=self._config.bsize, # Batch size
keep_dims=True, # Do NOT flatten the embeddings
return_tokens=True, # Return the tokens as well
)
logger.info(f"Chunk embeddings shape: {embeddings.shape}")
token_lists = []
for text, embedding, token_ids in zip(texts, embeddings, token_id_lists):
logger.debug(f"Chunk: {text}")
logger.debug(f"Chunk embedding shape: {embedding.shape}")
logger.debug(f"Chunk token ids: {token_ids}")
token_list = self._checkpoint.doc_tokenizer.tok.convert_ids_to_tokens(token_ids)
token_lists.append(token_list)
logger.debug(f"Chunk tokens: {token_list}")
# reconstructed_text = self._checkpoint.doc_tokenizer.tok.decode(token_count)
# logger.debug(f"Reconstructed text with special tokens: {reconstructed_text}")
return [
{"input": _input, "chunk_embedding": embedding.tolist(), "token_ids": token_ids.tolist(), "token_list": token_list}
for _input, embedding, token_ids, token_list in zip(texts, embeddings, token_id_lists, token_lists)
]
else:
raise ValueError("No data to process")