fgiauna commited on
Commit
71d9dfc
1 Parent(s): 042b9a0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -14,15 +14,15 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.1879
18
- - Loc: {'precision': 0.6144200626959248, 'recall': 0.5714285714285714, 'f1': 0.5921450151057402, 'number': 686}
19
- - Misc: {'precision': 0.6759708737864077, 'recall': 0.6975579211020664, 'f1': 0.6865947611710324, 'number': 1597}
20
- - Org: {'precision': 0.6231884057971014, 'recall': 0.6417910447761194, 'f1': 0.6323529411764706, 'number': 268}
21
- - Per: {'precision': 0.6520963425512935, 'recall': 0.7567287784679089, 'f1': 0.7005270723526592, 'number': 966}
22
- - Overall Precision: 0.6541
23
- - Overall Recall: 0.6850
24
- - Overall F1: 0.6692
25
- - Overall Accuracy: 0.9400
26
 
27
  ## Model description
28
 
@@ -51,11 +51,11 @@ The following hyperparameters were used during training:
51
 
52
  ### Training results
53
 
54
- | Training Loss | Epoch | Step | Validation Loss | Er | Isc | Oc | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
55
- |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
56
- | 0.2687 | 1.0 | 654 | 0.2022 | {'precision': 0.6098294884653962, 'recall': 0.629399585921325, 'f1': 0.6194600101884871, 'number': 966} | {'precision': 0.6234604105571847, 'recall': 0.6656230432060113, 'f1': 0.6438522107813446, 'number': 1597} | {'precision': 0.5617792421746294, 'recall': 0.4970845481049563, 'f1': 0.5274555297757154, 'number': 686} | 0.6080 | 0.6193 | 0.6136 | 0.9325 |
57
- | 0.1623 | 2.0 | 1308 | 0.1819 | {'precision': 0.6175523349436393, 'recall': 0.7939958592132506, 'f1': 0.6947463768115941, 'number': 966} | {'precision': 0.6879526003949967, 'recall': 0.654351909830933, 'f1': 0.6707317073170731, 'number': 1597} | {'precision': 0.6374367622259697, 'recall': 0.5510204081632653, 'f1': 0.5910867865519938, 'number': 686} | 0.6530 | 0.6741 | 0.6633 | 0.9390 |
58
- | 0.128 | 3.0 | 1962 | 0.1879 | {'precision': 0.6520963425512935, 'recall': 0.7567287784679089, 'f1': 0.7005270723526592, 'number': 966} | {'precision': 0.6759708737864077, 'recall': 0.6975579211020664, 'f1': 0.6865947611710324, 'number': 1597} | {'precision': 0.6144200626959248, 'recall': 0.5714285714285714, 'f1': 0.5921450151057402, 'number': 686} | 0.6566 | 0.6885 | 0.6722 | 0.9400 |
59
 
60
 
61
  ### Framework versions
 
14
 
15
  This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.1522
18
+ - Loc: {'precision': 0.7952488687782805, 'recall': 0.703, 'f1': 0.7462845010615711, 'number': 1000}
19
+ - Misc: {'precision': 0.6310931641188348, 'recall': 0.6640364188163884, 'f1': 0.6471458148476782, 'number': 3295}
20
+ - Org: {'precision': 0.6708074534161491, 'recall': 0.6792452830188679, 'f1': 0.6749999999999999, 'number': 477}
21
+ - Per: {'precision': 0.7778738115816768, 'recall': 0.7772020725388601, 'f1': 0.7775377969762419, 'number': 1158}
22
+ - Overall Precision: 0.6869
23
+ - Overall Recall: 0.6939
24
+ - Overall F1: 0.6904
25
+ - Overall Accuracy: 0.9567
26
 
27
  ## Model description
28
 
 
51
 
52
  ### Training results
53
 
54
+ | Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
56
+ | 0.1195 | 1.0 | 2044 | 0.1425 | {'precision': 0.750620347394541, 'recall': 0.605, 'f1': 0.6699889258028793, 'number': 1000} | {'precision': 0.6498784300104203, 'recall': 0.5678300455235205, 'f1': 0.606090055069647, 'number': 3295} | {'precision': 0.6763392857142857, 'recall': 0.6352201257861635, 'f1': 0.6551351351351351, 'number': 477} | {'precision': 0.6595744680851063, 'recall': 0.7763385146804835, 'f1': 0.7132090440301467, 'number': 1158} | 0.6692 | 0.6202 | 0.6438 | 0.9511 |
57
+ | 0.0736 | 2.0 | 4088 | 0.1387 | {'precision': 0.7714604236343366, 'recall': 0.692, 'f1': 0.7295730100158145, 'number': 1000} | {'precision': 0.6479814115596864, 'recall': 0.6770864946889226, 'f1': 0.6622143069159989, 'number': 3295} | {'precision': 0.7018348623853211, 'recall': 0.6415094339622641, 'f1': 0.6703176341730558, 'number': 477} | {'precision': 0.7717484926787253, 'recall': 0.7737478411053541, 'f1': 0.7727468736524364, 'number': 1158} | 0.6948 | 0.6956 | 0.6952 | 0.9575 |
58
+ | 0.0499 | 3.0 | 6132 | 0.1522 | {'precision': 0.7952488687782805, 'recall': 0.703, 'f1': 0.7462845010615711, 'number': 1000} | {'precision': 0.6310931641188348, 'recall': 0.6640364188163884, 'f1': 0.6471458148476782, 'number': 3295} | {'precision': 0.6708074534161491, 'recall': 0.6792452830188679, 'f1': 0.6749999999999999, 'number': 477} | {'precision': 0.7778738115816768, 'recall': 0.7772020725388601, 'f1': 0.7775377969762419, 'number': 1158} | 0.6869 | 0.6939 | 0.6904 | 0.9567 |
59
 
60
 
61
  ### Framework versions