update model card README.md
Browse files
README.md
CHANGED
@@ -14,15 +14,15 @@ should probably proofread and complete it, then remove this comment. -->
|
|
14 |
|
15 |
This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Loc: {'precision': 0.
|
19 |
-
- Misc: {'precision': 0.
|
20 |
-
- Org: {'precision': 0.
|
21 |
-
- Per: {'precision': 0.
|
22 |
-
- Overall Precision: 0.
|
23 |
-
- Overall Recall: 0.
|
24 |
-
- Overall F1: 0.
|
25 |
-
- Overall Accuracy: 0.
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -51,11 +51,11 @@ The following hyperparameters were used during training:
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
-
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
|
60 |
|
61 |
### Framework versions
|
|
|
14 |
|
15 |
This model is a fine-tuned version of [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) on the None dataset.
|
16 |
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.1522
|
18 |
+
- Loc: {'precision': 0.7952488687782805, 'recall': 0.703, 'f1': 0.7462845010615711, 'number': 1000}
|
19 |
+
- Misc: {'precision': 0.6310931641188348, 'recall': 0.6640364188163884, 'f1': 0.6471458148476782, 'number': 3295}
|
20 |
+
- Org: {'precision': 0.6708074534161491, 'recall': 0.6792452830188679, 'f1': 0.6749999999999999, 'number': 477}
|
21 |
+
- Per: {'precision': 0.7778738115816768, 'recall': 0.7772020725388601, 'f1': 0.7775377969762419, 'number': 1158}
|
22 |
+
- Overall Precision: 0.6869
|
23 |
+
- Overall Recall: 0.6939
|
24 |
+
- Overall F1: 0.6904
|
25 |
+
- Overall Accuracy: 0.9567
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Loc | Misc | Org | Per | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
56 |
+
| 0.1195 | 1.0 | 2044 | 0.1425 | {'precision': 0.750620347394541, 'recall': 0.605, 'f1': 0.6699889258028793, 'number': 1000} | {'precision': 0.6498784300104203, 'recall': 0.5678300455235205, 'f1': 0.606090055069647, 'number': 3295} | {'precision': 0.6763392857142857, 'recall': 0.6352201257861635, 'f1': 0.6551351351351351, 'number': 477} | {'precision': 0.6595744680851063, 'recall': 0.7763385146804835, 'f1': 0.7132090440301467, 'number': 1158} | 0.6692 | 0.6202 | 0.6438 | 0.9511 |
|
57 |
+
| 0.0736 | 2.0 | 4088 | 0.1387 | {'precision': 0.7714604236343366, 'recall': 0.692, 'f1': 0.7295730100158145, 'number': 1000} | {'precision': 0.6479814115596864, 'recall': 0.6770864946889226, 'f1': 0.6622143069159989, 'number': 3295} | {'precision': 0.7018348623853211, 'recall': 0.6415094339622641, 'f1': 0.6703176341730558, 'number': 477} | {'precision': 0.7717484926787253, 'recall': 0.7737478411053541, 'f1': 0.7727468736524364, 'number': 1158} | 0.6948 | 0.6956 | 0.6952 | 0.9575 |
|
58 |
+
| 0.0499 | 3.0 | 6132 | 0.1522 | {'precision': 0.7952488687782805, 'recall': 0.703, 'f1': 0.7462845010615711, 'number': 1000} | {'precision': 0.6310931641188348, 'recall': 0.6640364188163884, 'f1': 0.6471458148476782, 'number': 3295} | {'precision': 0.6708074534161491, 'recall': 0.6792452830188679, 'f1': 0.6749999999999999, 'number': 477} | {'precision': 0.7778738115816768, 'recall': 0.7772020725388601, 'f1': 0.7775377969762419, 'number': 1158} | 0.6869 | 0.6939 | 0.6904 | 0.9567 |
|
59 |
|
60 |
|
61 |
### Framework versions
|