fhirfly commited on
Commit
8edf2b7
1 Parent(s): 9fc0f6b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md CHANGED
@@ -1,3 +1,71 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ # Model Card for rapidfhir-procedures
5
+ ## Model Description
6
+ rapidfhir-procedures is a fine-tuned version of the google/flan-t5-small model, specifically designed to generate sentences that describe FHIR (Fast Healthcare Interoperability Resources) Procedure resources. This model aims to assist healthcare professionals, EHR (Electronic Health Record) systems, and other healthcare-related applications in generating human-readable and standardized descriptions of medical procedures.
7
+
8
+ ## Intended Use
9
+ The primary use-case for this model is to generate textual descriptions for FHIR Procedure resources. These descriptions can be used in:
10
+
11
+ - EHR systems
12
+ - Clinical decision support systems
13
+ - Healthcare data analytics platforms
14
+ - Documentation and reporting tools
15
+
16
+ ## Limitations
17
+ Medical Accuracy: While the model is trained to generate sentences based on FHIR standards, it is not a substitute for professional medical advice or judgment.
18
+
19
+ ## Language Support:
20
+ Currently, the model only supports English.
21
+
22
+ ## Context Sensitivity:
23
+ The model may not fully understand the context in which a procedure is performed, which could lead to less accurate or less relevant descriptions.
24
+
25
+ ## Requirements
26
+ Python 3.6 or higher
27
+ Hugging Face's Transformers library
28
+
29
+ ## Training Data
30
+ The model was trained on a dataset comprising FHIR Procedure resources generated by Synthea, which include a variety of medical procedures across different healthcare domains. The dataset was balanced to ensure a wide coverage of different types of procedures.
31
+
32
+ ## Evaluation
33
+ The model was evaluated based on:
34
+
35
+ ## Accuracy:
36
+ How well the generated sentences match the intended FHIR Procedure resources.
37
+
38
+ ## FHIR Compliance:
39
+ How well the generated sentences adhere to FHIR standards.
40
+
41
+ ## Usage
42
+ Here's a simple Python code snippet to use this model:
43
+
44
+ ```from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
45
+ tokenizer = AutoTokenizer.from_pretrained("rapidfhir-procedures")
46
+ model = AutoModelForSeq2SeqLM.from_pretrained("rapidfhir-procedures")
47
+ input_text = "Procedure code: 1234, Description: Appendectomy"
48
+ input_tokenized = tokenizer(input_text, return_tensors="pt")
49
+ output = model.generate(**input_tokenized)
50
+ output_text = tokenizer.decode(output[0], skip_special_tokens=True)
51
+ print(output_text)
52
+ ```
53
+
54
+ ## Responsible AI Practices
55
+ Transparency: This model card aims to provide a transparent view of the model's capabilities, limitations, and intended use-cases.
56
+
57
+ Accountability: The model should be used as a supplementary tool and not as a primary decision-making entity.
58
+
59
+ Ethical Considerations: Care has been taken to ensure that the model does not generate misleading or harmful medical information.
60
+
61
+ ## License
62
+ This model is released under [insert appropriate license here].
63
+
64
+ ## Contact Information
65
+ For any queries or feedback, please contact https://discord.fly.health.
66
+
67
+ This model card is subject to updates to include more details, address limitations, and provide usage guidelines.
68
+
69
+
70
+
71
+