File size: 1,966 Bytes
05a00ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b0c01
 
05a00ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59b0c01
05a00ed
 
 
 
 
59b0c01
 
 
 
 
 
 
 
 
 
05a00ed
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: my_awesome_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_model

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3764
- Accuracy: 0.8616

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 192  | 0.3510          | 0.8629   |
| No log        | 2.0   | 384  | 0.3658          | 0.8629   |
| 0.2898        | 3.0   | 576  | 0.3585          | 0.8564   |
| 0.2898        | 4.0   | 768  | 0.3760          | 0.8629   |
| 0.2898        | 5.0   | 960  | 0.3911          | 0.8629   |
| 0.285         | 6.0   | 1152 | 0.3838          | 0.8629   |
| 0.285         | 7.0   | 1344 | 0.3728          | 0.8629   |
| 0.2806        | 8.0   | 1536 | 0.3725          | 0.8616   |
| 0.2806        | 9.0   | 1728 | 0.3731          | 0.8629   |
| 0.2806        | 10.0  | 1920 | 0.3764          | 0.8616   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2