--- tags: - generated_from_trainer datasets: - ncbi_disease metrics: - precision - recall - f1 - accuracy model_index: - name: biobert_v1.1_pubmed-finetuned-ner-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: ncbi_disease type: ncbi_disease args: ncbi_disease metric: name: Accuracy type: accuracy value: 0.9829142288061745 base_model: fidukm34/biobert_v1.1_pubmed-finetuned-ner --- # biobert_v1.1_pubmed-finetuned-ner-finetuned-ner This model is a fine-tuned version of [fidukm34/biobert_v1.1_pubmed-finetuned-ner](https://huggingface.co/fidukm34/biobert_v1.1_pubmed-finetuned-ner) on the ncbi_disease dataset. It achieves the following results on the evaluation set: - Loss: 0.0715 - Precision: 0.8464 - Recall: 0.8872 - F1: 0.8663 - Accuracy: 0.9829 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 340 | 0.0715 | 0.8464 | 0.8872 | 0.8663 | 0.9829 | ### Framework versions - Transformers 4.8.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3