Muhammad Firdho
commited on
Commit
•
e2dcc8c
1
Parent(s):
3b80cd6
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224-in21k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
model-index:
|
14 |
+
- name: visual-emotion-recognition
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Image Classification
|
18 |
+
type: image-classification
|
19 |
+
dataset:
|
20 |
+
name: imagefolder
|
21 |
+
type: imagefolder
|
22 |
+
config: default
|
23 |
+
split: train
|
24 |
+
args: default
|
25 |
+
metrics:
|
26 |
+
- name: Accuracy
|
27 |
+
type: accuracy
|
28 |
+
value: 0.6171875
|
29 |
+
- name: Precision
|
30 |
+
type: precision
|
31 |
+
value: 0.6123019520308124
|
32 |
+
- name: Recall
|
33 |
+
type: recall
|
34 |
+
value: 0.6171875
|
35 |
+
- name: F1
|
36 |
+
type: f1
|
37 |
+
value: 0.6099565615619817
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# visual-emotion-recognition
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 1.2563
|
48 |
+
- Accuracy: 0.6172
|
49 |
+
- Precision: 0.6123
|
50 |
+
- Recall: 0.6172
|
51 |
+
- F1: 0.6100
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 1e-05
|
71 |
+
- train_batch_size: 32
|
72 |
+
- eval_batch_size: 32
|
73 |
+
- seed: 42
|
74 |
+
- gradient_accumulation_steps: 3
|
75 |
+
- total_train_batch_size: 96
|
76 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
77 |
+
- lr_scheduler_type: linear
|
78 |
+
- lr_scheduler_warmup_ratio: 0.1
|
79 |
+
- num_epochs: 100
|
80 |
+
- mixed_precision_training: Native AMP
|
81 |
+
|
82 |
+
### Training results
|
83 |
+
|
84 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
85 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
86 |
+
| 2.0811 | 0.94 | 5 | 2.0911 | 0.0859 | 0.0534 | 0.0859 | 0.0658 |
|
87 |
+
| 2.0668 | 1.88 | 10 | 2.0830 | 0.1016 | 0.0654 | 0.1016 | 0.0758 |
|
88 |
+
| 2.057 | 3.0 | 16 | 2.0733 | 0.1328 | 0.1119 | 0.1328 | 0.1066 |
|
89 |
+
| 2.0445 | 3.94 | 21 | 2.0643 | 0.1328 | 0.0965 | 0.1328 | 0.1000 |
|
90 |
+
| 2.0198 | 4.88 | 26 | 2.0537 | 0.1797 | 0.1911 | 0.1797 | 0.1604 |
|
91 |
+
| 2.008 | 6.0 | 32 | 2.0387 | 0.1797 | 0.1669 | 0.1797 | 0.1513 |
|
92 |
+
| 1.9937 | 6.94 | 37 | 2.0241 | 0.1875 | 0.1773 | 0.1875 | 0.1595 |
|
93 |
+
| 1.9711 | 7.88 | 42 | 2.0078 | 0.2031 | 0.1939 | 0.2031 | 0.1737 |
|
94 |
+
| 1.9468 | 9.0 | 48 | 1.9872 | 0.2578 | 0.2619 | 0.2578 | 0.2231 |
|
95 |
+
| 1.9184 | 9.94 | 53 | 1.9663 | 0.2969 | 0.3203 | 0.2969 | 0.2609 |
|
96 |
+
| 1.9042 | 10.88 | 58 | 1.9428 | 0.3047 | 0.3410 | 0.3047 | 0.2711 |
|
97 |
+
| 1.8673 | 12.0 | 64 | 1.9127 | 0.3047 | 0.3731 | 0.3047 | 0.2730 |
|
98 |
+
| 1.8449 | 12.94 | 69 | 1.8858 | 0.3203 | 0.4648 | 0.3203 | 0.2835 |
|
99 |
+
| 1.8019 | 13.88 | 74 | 1.8572 | 0.3203 | 0.4856 | 0.3203 | 0.2924 |
|
100 |
+
| 1.7438 | 15.0 | 80 | 1.8182 | 0.3203 | 0.4643 | 0.3203 | 0.3016 |
|
101 |
+
| 1.7037 | 15.94 | 85 | 1.7909 | 0.3438 | 0.4862 | 0.3438 | 0.3339 |
|
102 |
+
| 1.6787 | 16.88 | 90 | 1.7651 | 0.3438 | 0.4510 | 0.3438 | 0.3339 |
|
103 |
+
| 1.6514 | 18.0 | 96 | 1.7360 | 0.3672 | 0.4630 | 0.3672 | 0.3641 |
|
104 |
+
| 1.6322 | 18.94 | 101 | 1.7153 | 0.3828 | 0.4710 | 0.3828 | 0.3783 |
|
105 |
+
| 1.5861 | 19.88 | 106 | 1.6980 | 0.4062 | 0.5040 | 0.4062 | 0.3963 |
|
106 |
+
| 1.5871 | 21.0 | 112 | 1.6797 | 0.4219 | 0.4768 | 0.4219 | 0.4134 |
|
107 |
+
| 1.5709 | 21.94 | 117 | 1.6635 | 0.4062 | 0.4665 | 0.4062 | 0.4038 |
|
108 |
+
| 1.5296 | 22.88 | 122 | 1.6470 | 0.4297 | 0.4772 | 0.4297 | 0.4213 |
|
109 |
+
| 1.5168 | 24.0 | 128 | 1.6318 | 0.4297 | 0.4712 | 0.4297 | 0.4234 |
|
110 |
+
| 1.5105 | 24.94 | 133 | 1.6174 | 0.4609 | 0.4858 | 0.4609 | 0.4478 |
|
111 |
+
| 1.485 | 25.88 | 138 | 1.6024 | 0.4766 | 0.5290 | 0.4766 | 0.4717 |
|
112 |
+
| 1.4565 | 27.0 | 144 | 1.5929 | 0.4609 | 0.4800 | 0.4609 | 0.4517 |
|
113 |
+
| 1.4273 | 27.94 | 149 | 1.5803 | 0.4688 | 0.4800 | 0.4688 | 0.4581 |
|
114 |
+
| 1.4375 | 28.88 | 154 | 1.5650 | 0.5234 | 0.5527 | 0.5234 | 0.5134 |
|
115 |
+
| 1.3806 | 30.0 | 160 | 1.5563 | 0.4688 | 0.5052 | 0.4688 | 0.4651 |
|
116 |
+
| 1.3686 | 30.94 | 165 | 1.5443 | 0.5 | 0.5381 | 0.5 | 0.4969 |
|
117 |
+
| 1.3636 | 31.88 | 170 | 1.5273 | 0.5234 | 0.5459 | 0.5234 | 0.5152 |
|
118 |
+
| 1.3295 | 33.0 | 176 | 1.5175 | 0.5234 | 0.5444 | 0.5234 | 0.5160 |
|
119 |
+
| 1.3426 | 33.94 | 181 | 1.5115 | 0.5078 | 0.5179 | 0.5078 | 0.5030 |
|
120 |
+
| 1.2963 | 34.88 | 186 | 1.4918 | 0.5234 | 0.5399 | 0.5234 | 0.5133 |
|
121 |
+
| 1.2917 | 36.0 | 192 | 1.4832 | 0.5391 | 0.5436 | 0.5391 | 0.5294 |
|
122 |
+
| 1.2733 | 36.94 | 197 | 1.4718 | 0.5547 | 0.5730 | 0.5547 | 0.5475 |
|
123 |
+
| 1.2398 | 37.88 | 202 | 1.4556 | 0.5703 | 0.5996 | 0.5703 | 0.5642 |
|
124 |
+
| 1.2472 | 39.0 | 208 | 1.4575 | 0.5625 | 0.5820 | 0.5625 | 0.5600 |
|
125 |
+
| 1.2286 | 39.94 | 213 | 1.4426 | 0.5781 | 0.6024 | 0.5781 | 0.5728 |
|
126 |
+
| 1.1882 | 40.88 | 218 | 1.4277 | 0.5625 | 0.5787 | 0.5625 | 0.5532 |
|
127 |
+
| 1.1833 | 42.0 | 224 | 1.4209 | 0.5625 | 0.5857 | 0.5625 | 0.5579 |
|
128 |
+
| 1.1592 | 42.94 | 229 | 1.4171 | 0.5781 | 0.6089 | 0.5781 | 0.5766 |
|
129 |
+
| 1.1386 | 43.88 | 234 | 1.4046 | 0.5859 | 0.6053 | 0.5859 | 0.5790 |
|
130 |
+
| 1.118 | 45.0 | 240 | 1.3985 | 0.5547 | 0.5772 | 0.5547 | 0.5507 |
|
131 |
+
| 1.1151 | 45.94 | 245 | 1.3996 | 0.5703 | 0.6026 | 0.5703 | 0.5701 |
|
132 |
+
| 1.0848 | 46.88 | 250 | 1.3782 | 0.5703 | 0.5885 | 0.5703 | 0.5667 |
|
133 |
+
| 1.0729 | 48.0 | 256 | 1.3891 | 0.5703 | 0.5809 | 0.5703 | 0.5641 |
|
134 |
+
| 1.0702 | 48.94 | 261 | 1.3749 | 0.5625 | 0.5861 | 0.5625 | 0.5586 |
|
135 |
+
| 1.0408 | 49.88 | 266 | 1.3725 | 0.5625 | 0.5732 | 0.5625 | 0.5561 |
|
136 |
+
| 1.0274 | 51.0 | 272 | 1.3644 | 0.5547 | 0.5572 | 0.5547 | 0.5461 |
|
137 |
+
| 1.0321 | 51.94 | 277 | 1.3651 | 0.5625 | 0.5841 | 0.5625 | 0.5587 |
|
138 |
+
| 0.9872 | 52.88 | 282 | 1.3617 | 0.5547 | 0.5670 | 0.5547 | 0.5480 |
|
139 |
+
| 0.9991 | 54.0 | 288 | 1.3496 | 0.5859 | 0.5902 | 0.5859 | 0.5774 |
|
140 |
+
| 0.9891 | 54.94 | 293 | 1.3619 | 0.5781 | 0.5990 | 0.5781 | 0.5770 |
|
141 |
+
| 0.9654 | 55.88 | 298 | 1.3322 | 0.5625 | 0.5830 | 0.5625 | 0.5609 |
|
142 |
+
| 0.9489 | 57.0 | 304 | 1.3338 | 0.5781 | 0.5968 | 0.5781 | 0.5762 |
|
143 |
+
| 0.9346 | 57.94 | 309 | 1.3332 | 0.5781 | 0.6057 | 0.5781 | 0.5796 |
|
144 |
+
| 0.8965 | 58.88 | 314 | 1.3239 | 0.5781 | 0.6057 | 0.5781 | 0.5796 |
|
145 |
+
| 0.8809 | 60.0 | 320 | 1.3269 | 0.5938 | 0.6005 | 0.5938 | 0.5885 |
|
146 |
+
| 0.8928 | 60.94 | 325 | 1.3168 | 0.5703 | 0.5873 | 0.5703 | 0.5687 |
|
147 |
+
| 0.8662 | 61.88 | 330 | 1.3241 | 0.5625 | 0.5889 | 0.5625 | 0.5641 |
|
148 |
+
| 0.8496 | 63.0 | 336 | 1.3062 | 0.5703 | 0.5832 | 0.5703 | 0.5648 |
|
149 |
+
| 0.8485 | 63.94 | 341 | 1.2968 | 0.5859 | 0.5776 | 0.5859 | 0.5734 |
|
150 |
+
| 0.8425 | 64.88 | 346 | 1.3093 | 0.5781 | 0.5775 | 0.5781 | 0.5683 |
|
151 |
+
| 0.8175 | 66.0 | 352 | 1.2888 | 0.5859 | 0.6029 | 0.5859 | 0.5851 |
|
152 |
+
| 0.7942 | 66.94 | 357 | 1.3084 | 0.5781 | 0.5764 | 0.5781 | 0.5674 |
|
153 |
+
| 0.7865 | 67.88 | 362 | 1.3040 | 0.5938 | 0.6029 | 0.5938 | 0.5897 |
|
154 |
+
| 0.7376 | 69.0 | 368 | 1.2982 | 0.5781 | 0.5968 | 0.5781 | 0.5773 |
|
155 |
+
| 0.7838 | 69.94 | 373 | 1.2960 | 0.5703 | 0.5851 | 0.5703 | 0.5676 |
|
156 |
+
| 0.7779 | 70.88 | 378 | 1.2876 | 0.6016 | 0.5996 | 0.6016 | 0.5925 |
|
157 |
+
| 0.7259 | 72.0 | 384 | 1.2898 | 0.5781 | 0.5805 | 0.5781 | 0.5716 |
|
158 |
+
| 0.7242 | 72.94 | 389 | 1.2891 | 0.5859 | 0.6073 | 0.5859 | 0.5869 |
|
159 |
+
| 0.7185 | 73.88 | 394 | 1.2800 | 0.6094 | 0.6131 | 0.6094 | 0.6048 |
|
160 |
+
| 0.7366 | 75.0 | 400 | 1.2762 | 0.5781 | 0.5807 | 0.5781 | 0.5721 |
|
161 |
+
| 0.7194 | 75.94 | 405 | 1.2847 | 0.5938 | 0.6019 | 0.5938 | 0.5898 |
|
162 |
+
| 0.6699 | 76.88 | 410 | 1.2563 | 0.6172 | 0.6123 | 0.6172 | 0.6100 |
|
163 |
+
| 0.6958 | 78.0 | 416 | 1.2937 | 0.5703 | 0.5764 | 0.5703 | 0.5609 |
|
164 |
+
| 0.6673 | 78.94 | 421 | 1.2626 | 0.6094 | 0.6008 | 0.6094 | 0.5998 |
|
165 |
+
| 0.6443 | 79.88 | 426 | 1.2561 | 0.5781 | 0.5820 | 0.5781 | 0.5734 |
|
166 |
+
| 0.642 | 81.0 | 432 | 1.2654 | 0.5938 | 0.6009 | 0.5938 | 0.5910 |
|
167 |
+
| 0.6536 | 81.94 | 437 | 1.2604 | 0.5781 | 0.5938 | 0.5781 | 0.5773 |
|
168 |
+
| 0.5973 | 82.88 | 442 | 1.2783 | 0.5938 | 0.6081 | 0.5938 | 0.5927 |
|
169 |
+
| 0.6074 | 84.0 | 448 | 1.2709 | 0.5938 | 0.6041 | 0.5938 | 0.5865 |
|
170 |
+
| 0.6419 | 84.94 | 453 | 1.2820 | 0.5781 | 0.5815 | 0.5781 | 0.5680 |
|
171 |
+
| 0.611 | 85.88 | 458 | 1.2447 | 0.5625 | 0.5678 | 0.5625 | 0.5601 |
|
172 |
+
| 0.606 | 87.0 | 464 | 1.3020 | 0.5781 | 0.5889 | 0.5781 | 0.5711 |
|
173 |
+
| 0.5996 | 87.94 | 469 | 1.2690 | 0.5859 | 0.6016 | 0.5859 | 0.5862 |
|
174 |
+
| 0.5962 | 88.88 | 474 | 1.2713 | 0.5781 | 0.5787 | 0.5781 | 0.5699 |
|
175 |
+
| 0.5423 | 90.0 | 480 | 1.2856 | 0.5703 | 0.5803 | 0.5703 | 0.5688 |
|
176 |
+
| 0.5693 | 90.94 | 485 | 1.2512 | 0.5703 | 0.5886 | 0.5703 | 0.5724 |
|
177 |
+
| 0.5426 | 91.88 | 490 | 1.2654 | 0.5859 | 0.5881 | 0.5859 | 0.5808 |
|
178 |
+
| 0.5676 | 93.0 | 496 | 1.2829 | 0.5703 | 0.5818 | 0.5703 | 0.5702 |
|
179 |
+
| 0.5275 | 93.75 | 500 | 1.2630 | 0.5391 | 0.5541 | 0.5391 | 0.5428 |
|
180 |
+
|
181 |
+
|
182 |
+
### Framework versions
|
183 |
+
|
184 |
+
- Transformers 4.35.2
|
185 |
+
- Pytorch 2.1.0+cu121
|
186 |
+
- Datasets 2.17.0
|
187 |
+
- Tokenizers 0.15.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 343242432
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:507c8f38860c4e7f79d2c5e4eda3586c953d0c3520d783c52c4d69bf5860c013
|
3 |
size 343242432
|
runs/Feb11_18-19-37_fd75205e2bee/events.out.tfevents.1707675595.fd75205e2bee.1951.5
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9b10adb7699983e471282b49050541299a91264e119e76d84d9f214d0be267d
|
3 |
+
size 64588
|
runs/Feb11_18-19-37_fd75205e2bee/events.out.tfevents.1707677078.fd75205e2bee.1951.6
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68aa1708fff666be8c9e60d3495e5cbe4dcac86018faa4703b2a9e9318908212
|
3 |
+
size 560
|