Firqa Aqila Noor A commited on
Commit
b2e2ddc
1 Parent(s): 0c6f9cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -26,9 +26,9 @@ Then you can use the model like this:
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
@@ -51,11 +51,12 @@ def mean_pooling(model_output, attention_mask):
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
 
55
 
56
  # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
+ sentences = ["Ibukota Perancis adalah Paris", "Menara Eifel terletak di Paris, Perancis", "Pizza adalah makanan khas Italia", "Saya kuliah di Carneige Melon University"]
30
 
31
+ model = SentenceTransformer('firqaaa/indo-sbert-finetuned-snli-mnli-id')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
 
51
 
52
 
53
  # Sentences we want sentence embeddings for
54
+ sentences = ["Ibukota Perancis adalah Paris", "Menara Eifel terletak di Paris, Perancis", "Pizza adalah makanan khas Italia", "Saya kuliah di Carneige Melon University"]
55
+
56
 
57
  # Load model from HuggingFace Hub
58
+ tokenizer = AutoTokenizer.from_pretrained('firqaaa/indo-sbert-finetuned-snli-mnli-id')
59
+ model = AutoModel.from_pretrained('firqaaa/indo-sbert-finetuned-snli-mnli-id')
60
 
61
  # Tokenize sentences
62
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')