firqaaa commited on
Commit
5b6b921
1 Parent(s): 0385957

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false
9
+ }
README.md ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: Ini adalah kisah tentang dua orang yang tidak selaras dan tidak memiliki kesempatan
12
+ sendirian, tetapi bersama-sama mereka luar biasa.
13
+ - text: ia tidak percaya pada dirinya sendiri, ia tidak memiliki rasa humor ... ia
14
+ hanya merasa bosan.
15
+ - text: Keberanian band dalam menghadapi represi resmi sangat menginspirasi, terutama
16
+ bagi para hippie yang telah menua (termasuk saya sendiri).
17
+ - text: film yang cepat, lucu, dan sangat menghibur.
18
+ - text: film ini mencapai dampak yang sama besar dengan menyimpan pemikiran-pemikiran
19
+ ini tersembunyi seperti halnya film "Quills" yang menunjukkannya.
20
+ pipeline_tag: text-classification
21
+ inference: true
22
+ base_model: firqaaa/indo-sentence-bert-base
23
+ model-index:
24
+ - name: SetFit with firqaaa/indo-sentence-bert-base
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: Unknown
31
+ type: unknown
32
+ split: test
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.8
36
+ name: Accuracy
37
+ ---
38
+
39
+ # SetFit with firqaaa/indo-sentence-bert-base
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 2 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:--------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | positif | <ul><li>'benar-benar lucu'</li><li>'gulungan dari sebuah tong tong yang tersesat'</li><li>', mereka menemukan rute-rute baru melalui lingkungan yang sudah dikenal'</li></ul> |
70
+ | negatif | <ul><li>'tidak menarik atau berbau tidak sedap'</li><li>"telah melakukan kesalahan nyaris fatal dengan menjadi apa yang orang Inggris sebut 'terlalu pintar setengah mati'."</li><li>'untuk roboh'</li></ul> |
71
+
72
+ ## Evaluation
73
+
74
+ ### Metrics
75
+ | Label | Accuracy |
76
+ |:--------|:---------|
77
+ | **all** | 0.8 |
78
+
79
+ ## Uses
80
+
81
+ ### Direct Use for Inference
82
+
83
+ First install the SetFit library:
84
+
85
+ ```bash
86
+ pip install setfit
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+
91
+ ```python
92
+ from setfit import SetFitModel
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SetFitModel.from_pretrained("firqaaa/indo-setfit-bert-base-p1")
96
+ # Run inference
97
+ preds = model("film yang cepat, lucu, dan sangat menghibur.")
98
+ ```
99
+
100
+ <!--
101
+ ### Downstream Use
102
+
103
+ *List how someone could finetune this model on their own dataset.*
104
+ -->
105
+
106
+ <!--
107
+ ### Out-of-Scope Use
108
+
109
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
+ -->
111
+
112
+ <!--
113
+ ## Bias, Risks and Limitations
114
+
115
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
116
+ -->
117
+
118
+ <!--
119
+ ### Recommendations
120
+
121
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
122
+ -->
123
+
124
+ ## Training Details
125
+
126
+ ### Training Set Metrics
127
+ | Training set | Min | Median | Max |
128
+ |:-------------|:----|:-------|:----|
129
+ | Word count | 1 | 9.4825 | 51 |
130
+
131
+ | Label | Training Sample Count |
132
+ |:--------|:----------------------|
133
+ | negatif | 200 |
134
+ | positif | 200 |
135
+
136
+ ### Training Hyperparameters
137
+ - batch_size: (32, 32)
138
+ - num_epochs: (3, 3)
139
+ - max_steps: -1
140
+ - sampling_strategy: oversampling
141
+ - body_learning_rate: (2e-05, 1e-05)
142
+ - head_learning_rate: 0.01
143
+ - loss: CosineSimilarityLoss
144
+ - distance_metric: cosine_distance
145
+ - margin: 0.25
146
+ - end_to_end: False
147
+ - use_amp: False
148
+ - warmup_proportion: 0.1
149
+ - seed: 42
150
+ - eval_max_steps: -1
151
+ - load_best_model_at_end: True
152
+
153
+ ### Training Results
154
+ | Epoch | Step | Training Loss | Validation Loss |
155
+ |:-------:|:--------:|:-------------:|:---------------:|
156
+ | 0.0004 | 1 | 0.3079 | - |
157
+ | 0.0199 | 50 | 0.3644 | - |
158
+ | 0.0398 | 100 | 0.2816 | - |
159
+ | 0.0597 | 150 | 0.2254 | - |
160
+ | 0.0796 | 200 | 0.1798 | - |
161
+ | 0.0995 | 250 | 0.0478 | - |
162
+ | 0.1194 | 300 | 0.0049 | - |
163
+ | 0.1393 | 350 | 0.0016 | - |
164
+ | 0.1592 | 400 | 0.0011 | - |
165
+ | 0.1791 | 450 | 0.0005 | - |
166
+ | 0.1990 | 500 | 0.0003 | - |
167
+ | 0.2189 | 550 | 0.0004 | - |
168
+ | 0.2388 | 600 | 0.0003 | - |
169
+ | 0.2587 | 650 | 0.0003 | - |
170
+ | 0.2786 | 700 | 0.0001 | - |
171
+ | 0.2984 | 750 | 0.0002 | - |
172
+ | 0.3183 | 800 | 0.0001 | - |
173
+ | 0.3382 | 850 | 0.0001 | - |
174
+ | 0.3581 | 900 | 0.0001 | - |
175
+ | 0.3780 | 950 | 0.0001 | - |
176
+ | 0.3979 | 1000 | 0.0001 | - |
177
+ | 0.4178 | 1050 | 0.0001 | - |
178
+ | 0.4377 | 1100 | 0.0001 | - |
179
+ | 0.4576 | 1150 | 0.0001 | - |
180
+ | 0.4775 | 1200 | 0.0001 | - |
181
+ | 0.4974 | 1250 | 0.0001 | - |
182
+ | 0.5173 | 1300 | 0.0001 | - |
183
+ | 0.5372 | 1350 | 0.0001 | - |
184
+ | 0.5571 | 1400 | 0.0001 | - |
185
+ | 0.5770 | 1450 | 0.0001 | - |
186
+ | 0.5969 | 1500 | 0.0001 | - |
187
+ | 0.6168 | 1550 | 0.0001 | - |
188
+ | 0.6367 | 1600 | 0.0001 | - |
189
+ | 0.6566 | 1650 | 0.0001 | - |
190
+ | 0.6765 | 1700 | 0.0002 | - |
191
+ | 0.6964 | 1750 | 0.0001 | - |
192
+ | 0.7163 | 1800 | 0.0001 | - |
193
+ | 0.7362 | 1850 | 0.0001 | - |
194
+ | 0.7561 | 1900 | 0.0001 | - |
195
+ | 0.7760 | 1950 | 0.0001 | - |
196
+ | 0.7959 | 2000 | 0.0001 | - |
197
+ | 0.8158 | 2050 | 0.0001 | - |
198
+ | 0.8357 | 2100 | 0.0001 | - |
199
+ | 0.8556 | 2150 | 0.0001 | - |
200
+ | 0.8754 | 2200 | 0.0001 | - |
201
+ | 0.8953 | 2250 | 0.0 | - |
202
+ | 0.9152 | 2300 | 0.0001 | - |
203
+ | 0.9351 | 2350 | 0.0 | - |
204
+ | 0.9550 | 2400 | 0.0 | - |
205
+ | 0.9749 | 2450 | 0.0 | - |
206
+ | 0.9948 | 2500 | 0.0 | - |
207
+ | **1.0** | **2513** | **-** | **0.2622** |
208
+ | 1.0147 | 2550 | 0.0 | - |
209
+ | 1.0346 | 2600 | 0.0 | - |
210
+ | 1.0545 | 2650 | 0.0 | - |
211
+ | 1.0744 | 2700 | 0.0 | - |
212
+ | 1.0943 | 2750 | 0.0 | - |
213
+ | 1.1142 | 2800 | 0.0 | - |
214
+ | 1.1341 | 2850 | 0.0 | - |
215
+ | 1.1540 | 2900 | 0.0 | - |
216
+ | 1.1739 | 2950 | 0.0 | - |
217
+ | 1.1938 | 3000 | 0.0 | - |
218
+ | 1.2137 | 3050 | 0.0 | - |
219
+ | 1.2336 | 3100 | 0.0 | - |
220
+ | 1.2535 | 3150 | 0.0 | - |
221
+ | 1.2734 | 3200 | 0.0 | - |
222
+ | 1.2933 | 3250 | 0.0 | - |
223
+ | 1.3132 | 3300 | 0.0 | - |
224
+ | 1.3331 | 3350 | 0.0 | - |
225
+ | 1.3530 | 3400 | 0.0 | - |
226
+ | 1.3729 | 3450 | 0.0 | - |
227
+ | 1.3928 | 3500 | 0.0 | - |
228
+ | 1.4127 | 3550 | 0.0 | - |
229
+ | 1.4326 | 3600 | 0.0 | - |
230
+ | 1.4524 | 3650 | 0.0 | - |
231
+ | 1.4723 | 3700 | 0.0 | - |
232
+ | 1.4922 | 3750 | 0.0 | - |
233
+ | 1.5121 | 3800 | 0.0 | - |
234
+ | 1.5320 | 3850 | 0.0 | - |
235
+ | 1.5519 | 3900 | 0.0 | - |
236
+ | 1.5718 | 3950 | 0.0 | - |
237
+ | 1.5917 | 4000 | 0.0 | - |
238
+ | 1.6116 | 4050 | 0.0 | - |
239
+ | 1.6315 | 4100 | 0.0 | - |
240
+ | 1.6514 | 4150 | 0.0 | - |
241
+ | 1.6713 | 4200 | 0.0 | - |
242
+ | 1.6912 | 4250 | 0.0 | - |
243
+ | 1.7111 | 4300 | 0.0 | - |
244
+ | 1.7310 | 4350 | 0.0 | - |
245
+ | 1.7509 | 4400 | 0.0 | - |
246
+ | 1.7708 | 4450 | 0.0 | - |
247
+ | 1.7907 | 4500 | 0.0 | - |
248
+ | 1.8106 | 4550 | 0.0 | - |
249
+ | 1.8305 | 4600 | 0.0 | - |
250
+ | 1.8504 | 4650 | 0.0 | - |
251
+ | 1.8703 | 4700 | 0.0 | - |
252
+ | 1.8902 | 4750 | 0.0 | - |
253
+ | 1.9101 | 4800 | 0.0 | - |
254
+ | 1.9300 | 4850 | 0.0 | - |
255
+ | 1.9499 | 4900 | 0.0 | - |
256
+ | 1.9698 | 4950 | 0.0 | - |
257
+ | 1.9897 | 5000 | 0.0 | - |
258
+ | 2.0 | 5026 | - | 0.269 |
259
+ | 2.0096 | 5050 | 0.0 | - |
260
+ | 2.0294 | 5100 | 0.0 | - |
261
+ | 2.0493 | 5150 | 0.0 | - |
262
+ | 2.0692 | 5200 | 0.0 | - |
263
+ | 2.0891 | 5250 | 0.0 | - |
264
+ | 2.1090 | 5300 | 0.0 | - |
265
+ | 2.1289 | 5350 | 0.0 | - |
266
+ | 2.1488 | 5400 | 0.0 | - |
267
+ | 2.1687 | 5450 | 0.0 | - |
268
+ | 2.1886 | 5500 | 0.0 | - |
269
+ | 2.2085 | 5550 | 0.0 | - |
270
+ | 2.2284 | 5600 | 0.0 | - |
271
+ | 2.2483 | 5650 | 0.0 | - |
272
+ | 2.2682 | 5700 | 0.0 | - |
273
+ | 2.2881 | 5750 | 0.0 | - |
274
+ | 2.3080 | 5800 | 0.0 | - |
275
+ | 2.3279 | 5850 | 0.0 | - |
276
+ | 2.3478 | 5900 | 0.0 | - |
277
+ | 2.3677 | 5950 | 0.0 | - |
278
+ | 2.3876 | 6000 | 0.0 | - |
279
+ | 2.4075 | 6050 | 0.0 | - |
280
+ | 2.4274 | 6100 | 0.0 | - |
281
+ | 2.4473 | 6150 | 0.0 | - |
282
+ | 2.4672 | 6200 | 0.0 | - |
283
+ | 2.4871 | 6250 | 0.0 | - |
284
+ | 2.5070 | 6300 | 0.0 | - |
285
+ | 2.5269 | 6350 | 0.0 | - |
286
+ | 2.5468 | 6400 | 0.0 | - |
287
+ | 2.5667 | 6450 | 0.0 | - |
288
+ | 2.5865 | 6500 | 0.0 | - |
289
+ | 2.6064 | 6550 | 0.0 | - |
290
+ | 2.6263 | 6600 | 0.0 | - |
291
+ | 2.6462 | 6650 | 0.0 | - |
292
+ | 2.6661 | 6700 | 0.0 | - |
293
+ | 2.6860 | 6750 | 0.0 | - |
294
+ | 2.7059 | 6800 | 0.0 | - |
295
+ | 2.7258 | 6850 | 0.0 | - |
296
+ | 2.7457 | 6900 | 0.0 | - |
297
+ | 2.7656 | 6950 | 0.0 | - |
298
+ | 2.7855 | 7000 | 0.0 | - |
299
+ | 2.8054 | 7050 | 0.0 | - |
300
+ | 2.8253 | 7100 | 0.0 | - |
301
+ | 2.8452 | 7150 | 0.0 | - |
302
+ | 2.8651 | 7200 | 0.0 | - |
303
+ | 2.8850 | 7250 | 0.0 | - |
304
+ | 2.9049 | 7300 | 0.0 | - |
305
+ | 2.9248 | 7350 | 0.0 | - |
306
+ | 2.9447 | 7400 | 0.0 | - |
307
+ | 2.9646 | 7450 | 0.0 | - |
308
+ | 2.9845 | 7500 | 0.0 | - |
309
+ | 3.0 | 7539 | - | 0.2744 |
310
+
311
+ * The bold row denotes the saved checkpoint.
312
+ ### Framework Versions
313
+ - Python: 3.10.13
314
+ - SetFit: 1.0.3
315
+ - Sentence Transformers: 2.3.1
316
+ - Transformers: 4.36.2
317
+ - PyTorch: 2.1.2+cu121
318
+ - Datasets: 2.16.1
319
+ - Tokenizers: 0.15.0
320
+
321
+ ## Citation
322
+
323
+ ### BibTeX
324
+ ```bibtex
325
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
326
+ doi = {10.48550/ARXIV.2209.11055},
327
+ url = {https://arxiv.org/abs/2209.11055},
328
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
329
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
330
+ title = {Efficient Few-Shot Learning Without Prompts},
331
+ publisher = {arXiv},
332
+ year = {2022},
333
+ copyright = {Creative Commons Attribution 4.0 International}
334
+ }
335
+ ```
336
+
337
+ <!--
338
+ ## Glossary
339
+
340
+ *Clearly define terms in order to be accessible across audiences.*
341
+ -->
342
+
343
+ <!--
344
+ ## Model Card Authors
345
+
346
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
347
+ -->
348
+
349
+ <!--
350
+ ## Model Card Contact
351
+
352
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
353
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_2513",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 12,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.36.2",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 50000
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.20.1",
5
+ "pytorch": "1.11.0"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "negatif",
5
+ "positif"
6
+ ]
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb81841a3a0dfecdbb74385dc05e0fed6932f1699222526da8ca5032772027fb
3
+ size 497787752
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca049b0e4f2810394d6834eacf3146812a69af8b872de15691f3cea54e1383c7
3
+ size 7007
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff