farzadab commited on
Commit
c5cd944
1 Parent(s): 8115677

Upload folder using huggingface_hub

Browse files
ultravox_config.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from typing import Any, Dict, List, Optional
3
+
4
+ import transformers
5
+
6
+
7
+ @dataclasses.dataclass
8
+ class LoraConfigSimplified:
9
+ """
10
+ Low Rank Approximation (LoRA) configuration.
11
+
12
+ Used for language and audio models separately.
13
+ """
14
+
15
+ # The rank of the approximation
16
+ r: int = 0
17
+ lora_alpha: float = 8
18
+ target_modules: Optional[List[str]] = dataclasses.field(
19
+ default_factory=lambda: ["k_proj", "q_proj", "linear_k", "linear_q"]
20
+ )
21
+
22
+
23
+ class UltravoxConfig(transformers.PretrainedConfig):
24
+ r"""
25
+ This is the configuration class to store the configuration of a [`UltravoxForConditionalGeneration`]. It is used to instantiate an
26
+ Ultravox model according to the specified arguments, defining the model architecture.
27
+
28
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
29
+ documentation from [`PretrainedConfig`] for more information.
30
+
31
+ Args:
32
+ audio_config (`Wav2Vec2Config`, *optional*):
33
+ Custom audio config or dict
34
+ text_config (`Union[AutoConfig, dict]`, *optional*):
35
+ The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
36
+ ignore_index (`int`, *optional*, defaults to -100):
37
+ The ignore index for the loss function.
38
+ audio_token_index (`int`, *optional*, defaults to 32000):
39
+ The audio token index to encode the audio prompt.
40
+ stack_factor (`int`, *optional*, defaults to 8):
41
+ Audio downsampling factor for the multimodal projector.
42
+ norm_init (`float`, *optional*, defaults to 0.4):
43
+ The initialization value for the layer normalization.
44
+ projector_act (`str`, *optional*, defaults to `"swiglu"`):
45
+ The activation function used by the multimodal projector.
46
+ text_model_lora_config (`LoraConfigSimplified`, *optional*):
47
+ The LoRA configuration for finetuning the text model.
48
+ audio_model_lora_config (`LoraConfigSimplified`, *optional*):
49
+ The LoRA configuration for finetuning the audio model.
50
+
51
+
52
+ Example:
53
+
54
+ ```python
55
+ >>> from transformers import UltravoxForConditionalGeneration, Wav2Vec2Config, UltravoxConfig, LlamaConfig
56
+
57
+ >>> # Initializing an audio encoder config
58
+ >>> audio_config = Wav2Vec2Config()
59
+
60
+ >>> # Initializing a Llama config
61
+ >>> text_config = LlamaConfig()
62
+
63
+ >>> # Initializing a default configuration
64
+ >>> configuration = UltravoxConfig(audio_config, text_config)
65
+
66
+ >>> # Initializing a completely untrained model from the configuration
67
+ >>> model = UltravoxForConditionalGeneration(configuration)
68
+
69
+ >>> # Accessing the model configuration
70
+ >>> configuration = model.config
71
+
72
+ >>> # Initialize a model from pretrained checkpoints and random projector weights
73
+ >>> config = UltravoxConfig(audio_model_id="facebook/wav2vec2-base-960h", text_model_id="meta-llama/Llama-2-7b-chat-hf")
74
+ ```"""
75
+
76
+ model_type = "ultravox"
77
+ is_composition = False
78
+
79
+ def __init__(
80
+ self,
81
+ audio_config: Optional[Dict[str, Any]] = None,
82
+ text_config: Optional[Dict[str, Any]] = None,
83
+ audio_model_id: Optional[str] = None,
84
+ text_model_id: Optional[str] = None,
85
+ ignore_index: int = -100,
86
+ audio_token_index: int = 32000,
87
+ hidden_size: int = 4096,
88
+ stack_factor: int = 8,
89
+ norm_init: float = 0.4,
90
+ projector_act: str = "swiglu",
91
+ text_model_lora_config: Optional[LoraConfigSimplified] = None,
92
+ audio_model_lora_config: Optional[LoraConfigSimplified] = None,
93
+ **kwargs,
94
+ ):
95
+ self.ignore_index = ignore_index
96
+
97
+ self.audio_model_id = audio_model_id
98
+ self.text_model_id = text_model_id
99
+ self.audio_token_index = audio_token_index
100
+
101
+ self.hidden_size = hidden_size
102
+ self.stack_factor = stack_factor
103
+ self.norm_init = norm_init
104
+ self.projector_act = projector_act
105
+
106
+ if text_model_id is not None:
107
+ self.text_config: transformers.LlamaConfig = (
108
+ transformers.AutoConfig.from_pretrained(text_model_id)
109
+ )
110
+ else:
111
+ text_config = text_config or {}
112
+ self.text_config = transformers.CONFIG_MAPPING[
113
+ text_config.get("model_type", "llama")
114
+ ](**text_config)
115
+
116
+ if audio_model_id is not None:
117
+ self.audio_config: transformers.PretrainedConfig = (
118
+ transformers.AutoConfig.from_pretrained(audio_model_id)
119
+ )
120
+ else:
121
+ audio_config = audio_config or {}
122
+ self.audio_config = transformers.CONFIG_MAPPING[
123
+ audio_config.get("model_type", "wav2vec2")
124
+ ](**audio_config)
125
+
126
+ self.text_model_lora_config = (
127
+ text_model_lora_config
128
+ if isinstance(text_model_lora_config, dict)
129
+ else dataclasses.asdict(text_model_lora_config or LoraConfigSimplified())
130
+ )
131
+ self.audio_model_lora_config = (
132
+ audio_model_lora_config
133
+ if isinstance(audio_model_lora_config, dict)
134
+ else dataclasses.asdict(audio_model_lora_config or LoraConfigSimplified())
135
+ )
136
+
137
+ self.vocab_size = self.text_config.vocab_size
138
+
139
+ self.initializer_range = self.text_config.initializer_range
140
+
141
+ super().__init__(**kwargs)
ultravox_model.py ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Any, Dict, Optional, Set, Tuple, Union
3
+
4
+ import peft
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as F
8
+ import transformers
9
+ import transformers.activations
10
+ import transformers.modeling_outputs
11
+ import transformers.models
12
+
13
+ # We must use relative import in this directory to allow uploading to HF Hub
14
+ # Even "from . import X" pattern doesn't work (undocumented and unclear why)
15
+ from .ultravox_config import UltravoxConfig
16
+ from .whisper_model_modified import WhisperEncoder as ModifiedWhisperEncoder
17
+
18
+
19
+ class UltravoxModel(
20
+ transformers.LlamaPreTrainedModel,
21
+ transformers.GenerationMixin,
22
+ ):
23
+ """
24
+ The Ultravox model which consists of an audio encoder and a language model.
25
+
26
+ Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
27
+ projected to the language model's embedding space using a few linear layers.
28
+ The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
29
+
30
+ A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
31
+
32
+ Parameters:
33
+ config: Model configuration class with all the parameters of the model.
34
+ """
35
+
36
+ config_class = UltravoxConfig
37
+ config: UltravoxConfig # for type hinting
38
+ _no_split_modules = ["Wav2Vec2Model", "WhisperEncoder", "LlamaDecoderLayer"]
39
+
40
+ def __init__(self, config: UltravoxConfig):
41
+ super().__init__(config)
42
+
43
+ self.keep_params: Set[str] = set()
44
+ self.vocab_size = config.vocab_size
45
+
46
+ self.audio_tower = self._create_audio_tower(config)
47
+ self.multi_modal_projector = UltravoxProjector(config)
48
+ self.language_model = self._create_language_model(config)
49
+
50
+ self.post_init()
51
+
52
+ def get_input_embeddings(self):
53
+ return self.language_model.get_input_embeddings()
54
+
55
+ def set_input_embeddings(self, value):
56
+ self.language_model.set_input_embeddings(value)
57
+
58
+ def get_output_embeddings(self):
59
+ return self.language_model.get_output_embeddings()
60
+
61
+ def set_output_embeddings(self, new_embeddings):
62
+ self.language_model.set_output_embeddings(new_embeddings)
63
+
64
+ def set_decoder(self, decoder):
65
+ self.language_model.set_decoder(decoder)
66
+
67
+ def get_decoder(self):
68
+ return self.language_model.get_decoder()
69
+
70
+ def tie_weights(self):
71
+ return self.language_model.tie_weights()
72
+
73
+ def _setup_cache(
74
+ self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
75
+ ):
76
+ self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
77
+
78
+ def _reorder_cache(self, past_key_values, beam_idx):
79
+ return self.language_model._reorder_cache(past_key_values, beam_idx)
80
+
81
+ def resize_token_embeddings(
82
+ self,
83
+ new_num_tokens: Optional[int] = None,
84
+ pad_to_multiple_of: Optional[int] = None,
85
+ ) -> nn.Embedding:
86
+ model_embeds = self.language_model.resize_token_embeddings(
87
+ new_num_tokens, pad_to_multiple_of
88
+ )
89
+ # update vocab size
90
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
91
+ self.config.vocab_size = model_embeds.num_embeddings
92
+ self.vocab_size = model_embeds.num_embeddings
93
+ return model_embeds
94
+
95
+ def forward(
96
+ self,
97
+ input_ids: torch.Tensor,
98
+ audio_values: Optional[torch.FloatTensor] = None,
99
+ inputs_embeds: Optional[torch.FloatTensor] = None,
100
+ labels: Optional[torch.Tensor] = None,
101
+ attention_mask: Optional[torch.Tensor] = None,
102
+ audio_token_start_idx: Optional[torch.Tensor] = None,
103
+ audio_token_len: Optional[torch.Tensor] = None,
104
+ past_key_values: Optional[Tuple] = None,
105
+ **kwargs,
106
+ ) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
107
+ """
108
+ Forward pass for the Ultravox model.
109
+
110
+ `input_ids` are the tokenized text input. They are embedded by the language model as usual.
111
+ `audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
112
+ projected to the language model's embedding space using a few linear layers.
113
+ The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
114
+ of the audio embeddings in the merged embeddings.
115
+
116
+ Args:
117
+ input_ids: The tokenized text input.
118
+ audio_values: The processed audio values.
119
+ inputs_embeds: The embeddings for the input tokens.
120
+ labels: The tokenized text labels.
121
+ attention_mask: The attention mask for the input.
122
+ position_ids: The position ids for the input.
123
+ past_key_values: The past key value cache for the language model attention layers.
124
+ **kwargs: Additional keyword arguments. Passed directly to the language model.
125
+ """
126
+ if inputs_embeds is None:
127
+ # B x T -> B x T x D
128
+ inputs_embeds = self.get_input_embeddings().forward(input_ids)
129
+
130
+ if audio_values is not None:
131
+ assert (
132
+ audio_token_start_idx is not None and audio_token_len is not None
133
+ ), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
134
+ assert (
135
+ len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
136
+ ), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
137
+
138
+ # B x A/3200 x D
139
+ audio_tower_output = self.audio_tower.forward(
140
+ audio_values
141
+ ).last_hidden_state
142
+ audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
143
+
144
+ audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
145
+
146
+ # combine audio and text embeddings
147
+ for i, (audio, start, length) in enumerate(
148
+ zip(audio_embeds, audio_token_start_idx, audio_token_len)
149
+ ):
150
+ length = min(length, audio.shape[0])
151
+ inputs_embeds[i, start : start + length] = audio[:length]
152
+
153
+ lm_output = self.language_model.forward(
154
+ inputs_embeds=inputs_embeds,
155
+ labels=labels,
156
+ attention_mask=attention_mask,
157
+ past_key_values=past_key_values,
158
+ **kwargs,
159
+ )
160
+
161
+ return lm_output
162
+
163
+ def prepare_inputs_for_generation(
164
+ self,
165
+ input_ids: torch.Tensor,
166
+ audio_values: Optional[torch.FloatTensor] = None,
167
+ audio_token_start_idx: Optional[torch.Tensor] = None,
168
+ audio_token_len: Optional[torch.Tensor] = None,
169
+ past_key_values: Optional[Tuple] = None,
170
+ attention_mask: Optional[torch.Tensor] = None,
171
+ inputs_embeds: Optional[torch.Tensor] = None,
172
+ **kwargs,
173
+ ) -> Dict[str, Any]:
174
+ model_input = self.language_model.prepare_inputs_for_generation(
175
+ input_ids=input_ids,
176
+ past_key_values=past_key_values,
177
+ attention_mask=attention_mask,
178
+ inputs_embeds=inputs_embeds,
179
+ **kwargs,
180
+ )
181
+
182
+ if past_key_values is None and audio_values is not None:
183
+ # We only want to use audio features in the 1st generation step
184
+ model_input["audio_values"] = audio_values
185
+ model_input["audio_token_start_idx"] = audio_token_start_idx
186
+ model_input["audio_token_len"] = audio_token_len
187
+
188
+ return model_input
189
+
190
+ @classmethod
191
+ def _create_audio_tower(
192
+ cls, config: UltravoxConfig
193
+ ) -> Union[transformers.Wav2Vec2Model, ModifiedWhisperEncoder]:
194
+ if config.audio_model_id is not None:
195
+ if "whisper" in config.audio_model_id is not None:
196
+ audio_tower = ModifiedWhisperEncoder.from_pretrained(
197
+ config.audio_model_id
198
+ )
199
+ else:
200
+ audio_tower = transformers.AutoModel.from_pretrained(
201
+ config.audio_model_id
202
+ )
203
+ else:
204
+ if "whisper" in config.audio_config._name_or_path:
205
+ audio_tower = ModifiedWhisperEncoder(config.audio_config)
206
+ else:
207
+ audio_tower = transformers.AutoModel.from_config(config.audio_config)
208
+
209
+ if isinstance(
210
+ audio_tower,
211
+ (transformers.Wav2Vec2BertModel, transformers.WhisperModel),
212
+ ):
213
+ # For these models we only need the encoder part
214
+ # Wav2Vec2BertModel -> Wav2Vec2BertEncoder
215
+ # WhisperModel -> WhisperEncoder
216
+ audio_tower = audio_tower.encoder
217
+
218
+ audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
219
+ return audio_tower
220
+
221
+ @classmethod
222
+ def _create_language_model(
223
+ cls, config: UltravoxConfig
224
+ ) -> transformers.LlamaForCausalLM:
225
+ if config.text_model_id is not None:
226
+ language_model = transformers.AutoModelForCausalLM.from_pretrained(
227
+ config.text_model_id, attn_implementation=config._attn_implementation
228
+ )
229
+ else:
230
+ language_model = transformers.AutoModelForCausalLM.from_config(
231
+ config.text_config, attn_implementation=config._attn_implementation
232
+ )
233
+
234
+ language_model = apply_lora(language_model, config.text_model_lora_config)
235
+ return language_model
236
+
237
+ def merge_and_unload(self):
238
+ if isinstance(self.language_model, peft.PeftModel):
239
+ self.language_model = self.language_model.merge_and_unload()
240
+ # no need to download base language model weights anymore, so we can remove the id
241
+ self.config.text_model_id = None
242
+ self.keep_params.update(
243
+ set(
244
+ [
245
+ f"language_model.{name}"
246
+ for name, _ in self.language_model.named_parameters()
247
+ ]
248
+ )
249
+ )
250
+
251
+ if isinstance(self.audio_tower, peft.PeftModel):
252
+ self.audio_tower = self.audio_tower.merge_and_unload()
253
+ # no need to download base audio model weights anymore, so we can remove the id
254
+ self.config.audio_model_id = None
255
+ self.keep_params.update(
256
+ set(
257
+ [
258
+ f"audio_tower.{name}"
259
+ for name, _ in self.audio_tower.named_parameters()
260
+ ]
261
+ )
262
+ )
263
+
264
+ for param in ["text_model_lora_config", "audio_model_lora_config"]:
265
+ if hasattr(self.config, param):
266
+ delattr(self.config, param)
267
+
268
+ def push_to_hub(self, *args, **kwargs):
269
+ self.merge_and_unload()
270
+ self.to(self.language_model.dtype)
271
+ return super().push_to_hub(*args, **kwargs)
272
+
273
+ def state_dict(self, *args, **kwargs):
274
+ named_params = dict(self.named_parameters())
275
+ state_dict = super().state_dict(*args, **kwargs)
276
+
277
+ state_dict = {
278
+ k: v
279
+ for k, v in state_dict.items()
280
+ if k in self.keep_params
281
+ or (k in named_params and named_params[k].requires_grad)
282
+ }
283
+ return state_dict
284
+
285
+ def load_state_dict(
286
+ self,
287
+ state_dict: Dict[str, Any],
288
+ *args,
289
+ **kwargs,
290
+ ):
291
+ self.keep_params.update(set(state_dict.keys()))
292
+ return super().load_state_dict(state_dict, *args, **kwargs)
293
+
294
+ def print_trainable_parameters(self):
295
+ """
296
+ Prints the number of trainable parameters in the model (reuses Peft model's method)
297
+ """
298
+ count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
299
+
300
+ trainable_params, all_param = count_params(self)
301
+
302
+ logging.info(
303
+ f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
304
+ f" || trainable%: {100 * trainable_params / all_param:.1f}%"
305
+ )
306
+
307
+ lm_trainable_params, lm_all_params = count_params(self.language_model)
308
+ audio_trainable_params, audio_all_params = count_params(self.audio_tower)
309
+
310
+ projector_trainable_params = (
311
+ trainable_params - lm_trainable_params - audio_trainable_params
312
+ )
313
+ projector_all_params = all_param - lm_all_params - audio_all_params
314
+
315
+ logging.info(
316
+ f"Trainable%: "
317
+ f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
318
+ f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
319
+ f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
320
+ )
321
+
322
+
323
+ def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
324
+ """
325
+ Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
326
+ """
327
+ lora_config = peft.LoraConfig(**lora_config or {})
328
+
329
+ if lora_config.r == 0:
330
+ # freeze the model entirely
331
+ for param in model.parameters():
332
+ param.requires_grad = False
333
+ else:
334
+ model = peft.get_peft_model(model, lora_config)
335
+
336
+ return model
337
+
338
+
339
+ class StackAudioFrames(nn.Module):
340
+ """
341
+ Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
342
+
343
+ The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
344
+ NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
345
+ we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
346
+ In most cases this extra padding will get removed in the model's forward function so it has no effect.
347
+ """
348
+
349
+ def __init__(self, stack_factor: int = 8):
350
+ super().__init__()
351
+ self.stack_factor = stack_factor
352
+
353
+ def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
354
+ B, T, C = audio_embeds.shape
355
+ T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
356
+ audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
357
+ B, T, C = audio_embeds.shape
358
+ audio_embeds = audio_embeds.view(
359
+ B, T // self.stack_factor, C * self.stack_factor
360
+ )
361
+ return audio_embeds
362
+
363
+
364
+ class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
365
+ def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
366
+ super().__init__(hidden_size=hidden_size, eps=eps)
367
+ self.weight.data.fill_(init)
368
+
369
+
370
+ class SwiGLU(nn.Module):
371
+ def forward(self, x):
372
+ x, gate = x.chunk(2, dim=-1)
373
+ return F.silu(gate) * x
374
+
375
+
376
+ class UltravoxProjector(nn.Sequential):
377
+ def __init__(self, config: UltravoxConfig):
378
+ super().__init__()
379
+ self.hidden_dim = config.hidden_size
380
+ self._pad_and_stack = StackAudioFrames(config.stack_factor)
381
+ dim = config.audio_config.hidden_size * config.stack_factor
382
+ self.ln_pre = RMSNorm(dim, init=config.norm_init)
383
+ self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
384
+ dim = self.hidden_dim
385
+ self.act = transformers.activations.get_activation(config.projector_act)
386
+ dim = dim // 2 if config.projector_act == "swiglu" else dim
387
+ self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False)
388
+ self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init)
389
+
390
+ def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
391
+ audio_features = self._pad_and_stack(audio_features)
392
+ audio_features = self.ln_pre(audio_features)
393
+ hidden_states = self.linear_1(audio_features)
394
+ hidden_states = self.act(hidden_states)
395
+ hidden_states = self.linear_2(hidden_states)
396
+ hidden_states = self.ln_post(hidden_states)
397
+ return hidden_states
398
+
399
+
400
+ UltravoxConfig.register_for_auto_class()
401
+ UltravoxModel.register_for_auto_class()
402
+
403
+ transformers.AutoConfig.register("ultravox", UltravoxConfig)
404
+ transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
405
+ # transformers.AutoProcessor.register(UltravoxConfig, UltravoxProcessor) # TODO: make processo work standalone
406
+
407
+ transformers.activations.ACT2FN["swiglu"] = SwiGLU
ultravox_pipeline.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from typing import Any, Dict, List, Optional
3
+
4
+ import transformers
5
+
6
+ # We must use relative import in this directory to allow uploading to HF Hub
7
+ # Even "from . import X" pattern doesn't work (undocumented and unclear why)
8
+ from .ultravox_model import UltravoxModel
9
+ from .ultravox_processing import UltravoxProcessor
10
+
11
+
12
+ class UltravoxPipeline(transformers.Pipeline):
13
+ def __init__(
14
+ self,
15
+ model: UltravoxModel,
16
+ tokenizer: Optional[transformers.PreTrainedTokenizerBase] = None,
17
+ audio_processor: Optional[transformers.ProcessorMixin] = None,
18
+ **kwargs
19
+ ):
20
+ if tokenizer is None:
21
+ tokenizer = transformers.AutoTokenizer.from_pretrained(
22
+ model.config._name_or_path
23
+ )
24
+
25
+ if audio_processor is None:
26
+ audio_processor = transformers.Wav2Vec2Processor.from_pretrained(
27
+ model.config.audio_model_id
28
+ )
29
+
30
+ self.processor = UltravoxProcessor(
31
+ audio_processor, tokenizer=tokenizer, stack_factor=model.config.stack_factor
32
+ )
33
+
34
+ super().__init__(model=model, tokenizer=tokenizer, **kwargs)
35
+
36
+ def _sanitize_parameters(self, **kwargs):
37
+ generation_kwargs = {}
38
+ if "temperature" in kwargs:
39
+ generation_kwargs["temperature"] = kwargs["temperature"]
40
+ if "max_new_tokens" in kwargs:
41
+ generation_kwargs["max_new_tokens"] = kwargs["max_new_tokens"]
42
+ if "repetition_penalty" in kwargs:
43
+ generation_kwargs["repetition_penalty"] = kwargs["repetition_penalty"]
44
+ return {}, generation_kwargs, {}
45
+
46
+ def preprocess(self, inputs: Dict[str, Any]):
47
+ if "turns" in inputs:
48
+ turns = inputs["turns"]
49
+ else:
50
+ prompt = inputs.get("prompt", "<|audio|>")
51
+ if "<|audio|>" not in prompt:
52
+ logging.warning(
53
+ "Prompt does not contain '<|audio|>', appending '<|audio|>' to the end of the prompt."
54
+ )
55
+ prompt += " <|audio|>"
56
+ turns = [{"role": "user", "content": prompt}]
57
+
58
+ text = self.processor.tokenizer.apply_chat_template(turns, tokenize=False)
59
+
60
+ # TODO: allow text-only mode?
61
+ assert "audio" in inputs, "Audio input is required"
62
+
63
+ if "sampling_rate" not in inputs:
64
+ logging.warning(
65
+ "No sampling rate provided, using default of 16kHz. We highly recommend providing the correct sampling rate."
66
+ )
67
+
68
+ return self.processor(
69
+ text=text,
70
+ audio=inputs["audio"],
71
+ sampling_rate=inputs.get("sampling_rate", 16000),
72
+ )
73
+
74
+ def _forward(
75
+ self,
76
+ model_inputs: Dict[str, Any],
77
+ temperature: Optional[float] = None,
78
+ max_new_tokens: Optional[int] = None,
79
+ repetition_penalty: float = 1.1,
80
+ ) -> List[int]:
81
+ temperature = temperature or None
82
+ do_sample = temperature is not None
83
+
84
+ terminators = [self.tokenizer.eos_token_id]
85
+ if "<|eot_id|>" in self.tokenizer.added_tokens_encoder:
86
+ terminators.append(self.tokenizer.convert_tokens_to_ids("<|eot_id|>"))
87
+
88
+ input_len = model_inputs["input_ids"].shape[1]
89
+
90
+ outputs = self.model.generate(
91
+ **model_inputs,
92
+ do_sample=do_sample,
93
+ temperature=temperature,
94
+ max_new_tokens=max_new_tokens,
95
+ repetition_penalty=repetition_penalty,
96
+ eos_token_id=terminators
97
+ )
98
+ return outputs[0][input_len:]
99
+
100
+ def postprocess(self, model_outputs) -> str:
101
+ output_text = self.tokenizer.decode(model_outputs, skip_special_tokens=True)
102
+ return output_text
103
+
104
+
105
+ transformers.pipelines.PIPELINE_REGISTRY.register_pipeline(
106
+ "ultravox-pipeline",
107
+ pipeline_class=UltravoxPipeline,
108
+ pt_model=transformers.AutoModel,
109
+ type="multimodal",
110
+ )
ultravox_processing.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Union
2
+
3
+ import numpy as np
4
+ import torch
5
+ import transformers
6
+
7
+
8
+ class UltravoxProcessor(transformers.ProcessorMixin):
9
+ """
10
+ Constructs an Ultravox processor which wraps an audio processor and a tokenizer into a single processor.
11
+
12
+ Args:
13
+ audio_processor: The audio processor for the audio encoder.
14
+ tokenizer: The tokenizer for the language model.
15
+ """
16
+
17
+ attributes = ["audio_processor", "tokenizer"]
18
+ audio_processor_class = (
19
+ "Wav2Vec2Processor",
20
+ "SeamlessM4TFeatureExtractor",
21
+ "WhisperProcessor",
22
+ )
23
+ tokenizer_class = (
24
+ "PreTrainedTokenizer",
25
+ "PreTrainedTokenizerFast",
26
+ )
27
+
28
+ tokenizer: transformers.PreTrainedTokenizerBase
29
+ audio_processor: transformers.ProcessorMixin
30
+
31
+ def __init__(
32
+ self,
33
+ audio_processor=None,
34
+ tokenizer=None,
35
+ audio_padding: str = "longest",
36
+ encoder_ds_factor: int = 320,
37
+ stack_factor: int = 8,
38
+ audio_placeholder: str = "<|audio|>",
39
+ ):
40
+ """
41
+ Args:
42
+ audio_processor: The audio processor for the audio encoder.
43
+ tokenizer: The tokenizer for the language model.
44
+ audio_padding: The padding strategy for the audio encoder.
45
+ encoder_ds_factor: The downsample factor of the audio encoder.
46
+ stack_factor: The factor by which the audio encoder output is stacked in the multimodal projector.
47
+ audio_placeholder: The placeholder for the audio in the text.
48
+ """
49
+ self.audio_padding = audio_padding
50
+ self.encoder_ds_factor = encoder_ds_factor
51
+ self.stack_factor = stack_factor
52
+ self.audio_placeholder = audio_placeholder
53
+ self.audio_token_replacement = tokenizer.eos_token
54
+ assert (
55
+ self.audio_token_replacement is not None
56
+ ), "The tokenizer has no EOS token. Cannot recover."
57
+ super().__init__(audio_processor=audio_processor, tokenizer=tokenizer)
58
+
59
+ def __call__(
60
+ self,
61
+ text: Optional[str] = None,
62
+ audio: Optional[Union[np.ndarray, torch.Tensor]] = None,
63
+ sampling_rate: Optional[int] = None,
64
+ return_tensors: Optional[
65
+ Union[str, transformers.TensorType]
66
+ ] = transformers.TensorType.PYTORCH,
67
+ **kwargs,
68
+ ) -> transformers.BatchFeature:
69
+ """
70
+ Main method to prepare for the model one text sequence and audio. This method forwards the `text`
71
+ and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] if `text` is not `None` to encode
72
+ the text. To prepare the audio(s), this method forwards the `audio`, `sampling_rate` and `kwargs` arguments to
73
+ audio processor's [`~Wav2Vec2Processor.__call__`] if `audio` is not `None`. Please refer to the docstring
74
+ of the above two methods for more information.
75
+
76
+ Args:
77
+ text (`str`, `List[str]`):
78
+ The sequence to be encoded. Sequence can be a string or (pretokenized string).
79
+ audio (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
80
+ The audio to be prepared. Audio can be NumPy array or PyTorch tensor. In case of a
81
+ NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels, and T the
82
+ sample length of the audio.
83
+ sampling_rate (`int`, *optional*, defaults to 16000):
84
+ Sampling rate of the input audio. We expect 16kHz audio. Don't change this value unless you know what
85
+ you are doing.
86
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
87
+ If set, will return tensors of a particular framework. Acceptable values are:
88
+
89
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
90
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
91
+ - `'np'`: Return NumPy `np.ndarray` objects.
92
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
93
+
94
+ Returns:
95
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
96
+
97
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
98
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
99
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
100
+ `None`).
101
+ - **audio_values** -- Processed audio values to be fed to a model. Returned when `audio` is not `None`.
102
+ - **audio_token_len** -- Predicted number of audio frames: this value is guaranteed to be a close upper bound.
103
+ Returned when `audio` is not `None`.
104
+ - **audio_token_start_idx** -- The index in the tokenized text where the audio starts. Returned when `audio` is not `None`.
105
+ """
106
+ # TODO: Add support for multiple audio and text inputs.
107
+ data = {}
108
+ audio_embed_frames = 0
109
+ if audio is not None and len(audio) > 0:
110
+ if self.audio_padding == "max_length":
111
+ # 30 seconds is the expected length for Whisper
112
+ assert sampling_rate is not None, "Sampling rate must be provided."
113
+ audio_len = 30 * sampling_rate
114
+ else:
115
+ audio_len = audio.shape[-1]
116
+ # It's guaranteed that the number of frames is less than or equal to this amount.
117
+ # For Whisper this is exact AFAICT, but for Wav2Vec2 it's an upper bound.
118
+ # Currently, StackAudioFrames makes sure an over-estimation won't cause issues by padding the audio embeddings.
119
+ nb_encoder_frames = int(round(audio_len / self.encoder_ds_factor + 1e-4))
120
+ audio_embed_frames = int(np.ceil(nb_encoder_frames / self.stack_factor))
121
+ data["audio_token_len"] = [audio_embed_frames]
122
+
123
+ x = self.audio_processor(
124
+ audio,
125
+ sampling_rate=sampling_rate,
126
+ padding="longest",
127
+ max_length=audio_len,
128
+ **kwargs,
129
+ )
130
+ if "input_features" in x:
131
+ data["audio_values"] = x.input_features
132
+ else:
133
+ data["audio_values"] = x.input_values
134
+
135
+ if text is not None:
136
+ assert isinstance(
137
+ text, str
138
+ ), "Text must be a string. Batch mode not supported yet."
139
+ if self.audio_placeholder in text:
140
+ if "audio_token_len" not in data:
141
+ raise ValueError(
142
+ f"audio must be provided when using audio placeholder ({self.audio_placeholder}) in text."
143
+ )
144
+
145
+ start_idx = len(
146
+ self.tokenizer.encode(
147
+ text[: text.index(self.audio_placeholder)],
148
+ add_special_tokens=False,
149
+ )
150
+ )
151
+ data["audio_token_start_idx"] = [start_idx]
152
+ text = text.replace(
153
+ self.audio_placeholder,
154
+ self.audio_token_replacement * audio_embed_frames,
155
+ )
156
+
157
+ # Special tokens like BOS should already have been added by the caller.
158
+ data.update(self.tokenizer([text], add_special_tokens=False, **kwargs))
159
+
160
+ return transformers.BatchFeature(data=data, tensor_type=return_tensors)
161
+
162
+ def batch_decode(self, *args, **kwargs):
163
+ return self.tokenizer.batch_decode(*args, **kwargs)
164
+
165
+ def decode(self, *args, **kwargs):
166
+ return self.tokenizer.decode(*args, **kwargs)
167
+
168
+ @property
169
+ def model_input_names(self):
170
+ tokenizer_input_names = self.tokenizer.model_input_names
171
+ audio_processor_input_names = self.audio_processor.model_input_names
172
+ return list(set(tokenizer_input_names + audio_processor_input_names))
whisper_model_modified.py ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # modified from https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
2
+ # see this issue for the commentary: https://github.com/huggingface/transformers/issues/25744
3
+ #
4
+ # Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ import torch
18
+ import torch.nn as nn
19
+ import transformers
20
+ import transformers.modeling_outputs
21
+ from transformers.models.whisper import modeling_whisper as whisper
22
+
23
+
24
+ class WhisperEncoder(whisper.WhisperEncoder):
25
+ """
26
+ Encoder portion of OpenAI's Whisper model.
27
+
28
+ This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
29
+ 1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
30
+ 2. allow less than 30 second of audio padding to be passed in:
31
+ - relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
32
+ - embed_pos is now sliced to match the length of `inputs_embeds`
33
+
34
+ Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
35
+ """
36
+
37
+ base_model_prefix = "model.encoder"
38
+
39
+ def forward(
40
+ self,
41
+ input_features,
42
+ attention_mask=None,
43
+ head_mask=None,
44
+ output_attentions=None,
45
+ output_hidden_states=None,
46
+ return_dict=None,
47
+ ):
48
+ expected_seq_length = (
49
+ self.config.max_source_positions
50
+ * self.conv1.stride[0]
51
+ * self.conv2.stride[0]
52
+ )
53
+ if input_features.shape[-1] > expected_seq_length:
54
+ raise ValueError(
55
+ f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
56
+ )
57
+
58
+ output_attentions = (
59
+ output_attentions
60
+ if output_attentions is not None
61
+ else self.config.output_attentions
62
+ )
63
+ output_hidden_states = (
64
+ output_hidden_states
65
+ if output_hidden_states is not None
66
+ else self.config.output_hidden_states
67
+ )
68
+ return_dict = (
69
+ return_dict if return_dict is not None else self.config.use_return_dict
70
+ )
71
+ inputs_embeds = nn.functional.gelu(self.conv1(input_features))
72
+ inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
73
+
74
+ inputs_embeds = inputs_embeds.permute(0, 2, 1)
75
+ embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
76
+
77
+ hidden_states = inputs_embeds + embed_pos
78
+ hidden_states = nn.functional.dropout(
79
+ hidden_states, p=self.dropout, training=self.training
80
+ )
81
+
82
+ encoder_states = () if output_hidden_states else None
83
+ all_attentions = () if output_attentions else None
84
+
85
+ # check if head_mask has a correct number of layers specified if desired
86
+ if head_mask is not None:
87
+ assert head_mask.size()[0] == (
88
+ len(self.layers)
89
+ ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
90
+
91
+ for idx, encoder_layer in enumerate(self.layers):
92
+ if output_hidden_states:
93
+ encoder_states = encoder_states + (hidden_states,)
94
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
95
+ to_drop = False
96
+ if self.training:
97
+ dropout_probability = torch.rand([])
98
+ if dropout_probability < self.layerdrop: # skip the layer
99
+ to_drop = True
100
+
101
+ if to_drop:
102
+ layer_outputs = (None, None)
103
+ else:
104
+ if self.gradient_checkpointing and self.training:
105
+ layer_outputs = self._gradient_checkpointing_func(
106
+ encoder_layer.__call__,
107
+ hidden_states,
108
+ None,
109
+ (head_mask[idx] if head_mask is not None else None),
110
+ output_attentions,
111
+ )
112
+ else:
113
+ layer_outputs = encoder_layer(
114
+ hidden_states,
115
+ None,
116
+ layer_head_mask=(
117
+ head_mask[idx] if head_mask is not None else None
118
+ ),
119
+ output_attentions=output_attentions,
120
+ )
121
+
122
+ hidden_states = layer_outputs[0]
123
+
124
+ if output_attentions:
125
+ all_attentions = all_attentions + (layer_outputs[1],)
126
+
127
+ hidden_states = self.layer_norm(hidden_states)
128
+ if output_hidden_states:
129
+ encoder_states = encoder_states + (hidden_states,)
130
+
131
+ if not return_dict:
132
+ return tuple(
133
+ v
134
+ for v in [hidden_states, encoder_states, all_attentions]
135
+ if v is not None
136
+ )
137
+ return transformers.modeling_outputs.BaseModelOutput(
138
+ last_hidden_state=hidden_states,
139
+ hidden_states=encoder_states,
140
+ attentions=all_attentions,
141
+ )