File size: 187,021 Bytes
efa05e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
2023-05-15 21:27:39,581 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:39,581 Model: "SequenceTagger(
  (embeddings): StackedEmbeddings(
    (list_embedding_0): WordEmbeddings(
      'de'
      (embedding): Embedding(1000000, 300)
    )
    (list_embedding_1): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.25, inplace=False)
        (encoder): Embedding(275, 100)
        (rnn): LSTM(100, 2048)
      )
    )
    (list_embedding_2): FlairEmbeddings(
      (lm): LanguageModel(
        (drop): Dropout(p=0.25, inplace=False)
        (encoder): Embedding(275, 100)
        (rnn): LSTM(100, 2048)
      )
    )
  )
  (word_dropout): WordDropout(p=0.05)
  (locked_dropout): LockedDropout(p=0.5)
  (embedding2nn): Linear(in_features=4396, out_features=4396, bias=True)
  (rnn): LSTM(4396, 256, batch_first=True, bidirectional=True)
  (linear): Linear(in_features=512, out_features=71, bias=True)
  (loss_function): ViterbiLoss()
  (crf): CRF()
)"
2023-05-15 21:27:39,581 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:39,581 Corpus: 420 train + 500 dev + 506 test sentences
2023-05-15 21:27:39,581 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:39,581 Train:  420 sentences
2023-05-15 21:27:39,581         (train_with_dev=False, train_with_test=False)
2023-05-15 21:27:39,581 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:39,581 Training Params:
2023-05-15 21:27:39,581  - learning_rate: "0.1" 
2023-05-15 21:27:39,581  - mini_batch_size: "4"
2023-05-15 21:27:39,581  - max_epochs: "150"
2023-05-15 21:27:39,581  - shuffle: "True"
2023-05-15 21:27:39,581 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:39,581 Plugins:
2023-05-15 21:27:39,581  - AnnealOnPlateau | patience: '3', anneal_factor: '0.5', min_learning_rate: '0.0001'
2023-05-15 21:27:39,581 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:39,581 Final evaluation on model from best epoch (best-model.pt)
2023-05-15 21:27:39,581  - metric: "('micro avg', 'accuracy')"
2023-05-15 21:27:39,581 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:39,581 Computation:
2023-05-15 21:27:39,581  - compute on device: cuda:0
2023-05-15 21:27:39,581  - embedding storage: cpu
2023-05-15 21:27:39,581 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:39,581 Model training base path: "pos-twitter-german-bs4-4"
2023-05-15 21:27:39,581 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:39,581 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:40,533 epoch 1 - iter 10/105 - loss 4.13732332 - time (sec): 0.95 - samples/sec: 579.84 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:41,490 epoch 1 - iter 20/105 - loss 3.80546391 - time (sec): 1.91 - samples/sec: 605.84 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:42,512 epoch 1 - iter 30/105 - loss 3.50840566 - time (sec): 2.93 - samples/sec: 597.21 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:43,510 epoch 1 - iter 40/105 - loss 3.26294657 - time (sec): 3.93 - samples/sec: 616.23 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:44,492 epoch 1 - iter 50/105 - loss 3.05152618 - time (sec): 4.91 - samples/sec: 620.65 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:45,477 epoch 1 - iter 60/105 - loss 2.92978663 - time (sec): 5.90 - samples/sec: 610.17 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:46,428 epoch 1 - iter 70/105 - loss 2.80236063 - time (sec): 6.85 - samples/sec: 608.67 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:47,452 epoch 1 - iter 80/105 - loss 2.66861768 - time (sec): 7.87 - samples/sec: 609.51 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:48,403 epoch 1 - iter 90/105 - loss 2.56291144 - time (sec): 8.82 - samples/sec: 611.03 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:49,333 epoch 1 - iter 100/105 - loss 2.48654514 - time (sec): 9.75 - samples/sec: 607.29 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:49,822 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:49,822 EPOCH 1 done: loss 2.4446 - lr: 0.100000
2023-05-15 21:27:51,262 DEV : loss 1.257121205329895 - accuracy (micro avg)  0.6784
2023-05-15 21:27:51,274  - 0 epochs without improvement
2023-05-15 21:27:51,274 saving best model
2023-05-15 21:27:52,427 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:52,588 epoch 2 - iter 10/105 - loss 1.50705724 - time (sec): 0.16 - samples/sec: 3730.85 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:52,740 epoch 2 - iter 20/105 - loss 1.42392433 - time (sec): 0.31 - samples/sec: 3666.19 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:52,895 epoch 2 - iter 30/105 - loss 1.32810853 - time (sec): 0.47 - samples/sec: 3740.19 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:53,018 epoch 2 - iter 40/105 - loss 1.26945619 - time (sec): 0.59 - samples/sec: 3883.22 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:53,142 epoch 2 - iter 50/105 - loss 1.25974974 - time (sec): 0.71 - samples/sec: 4067.80 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:53,272 epoch 2 - iter 60/105 - loss 1.24602583 - time (sec): 0.84 - samples/sec: 4120.93 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:53,394 epoch 2 - iter 70/105 - loss 1.26179294 - time (sec): 0.97 - samples/sec: 4184.40 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:53,517 epoch 2 - iter 80/105 - loss 1.22697354 - time (sec): 1.09 - samples/sec: 4240.10 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:53,646 epoch 2 - iter 90/105 - loss 1.20106764 - time (sec): 1.22 - samples/sec: 4334.29 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:53,772 epoch 2 - iter 100/105 - loss 1.17538832 - time (sec): 1.34 - samples/sec: 4373.10 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:53,839 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:53,839 EPOCH 2 done: loss 1.1693 - lr: 0.100000
2023-05-15 21:27:54,478 DEV : loss 0.7305335402488708 - accuracy (micro avg)  0.8135
2023-05-15 21:27:54,490  - 0 epochs without improvement
2023-05-15 21:27:54,490 saving best model
2023-05-15 21:27:56,027 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:56,188 epoch 3 - iter 10/105 - loss 1.03272509 - time (sec): 0.16 - samples/sec: 3494.67 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:56,358 epoch 3 - iter 20/105 - loss 0.97097376 - time (sec): 0.33 - samples/sec: 3768.79 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:56,509 epoch 3 - iter 30/105 - loss 0.95689355 - time (sec): 0.48 - samples/sec: 3821.29 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:56,667 epoch 3 - iter 40/105 - loss 0.93238795 - time (sec): 0.64 - samples/sec: 3918.58 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:56,810 epoch 3 - iter 50/105 - loss 0.91059667 - time (sec): 0.78 - samples/sec: 3897.35 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:56,947 epoch 3 - iter 60/105 - loss 0.92685783 - time (sec): 0.92 - samples/sec: 3814.35 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:57,084 epoch 3 - iter 70/105 - loss 0.91279862 - time (sec): 1.06 - samples/sec: 3916.54 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:57,212 epoch 3 - iter 80/105 - loss 0.89905473 - time (sec): 1.18 - samples/sec: 4005.24 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:57,333 epoch 3 - iter 90/105 - loss 0.87855579 - time (sec): 1.31 - samples/sec: 4077.26 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:57,458 epoch 3 - iter 100/105 - loss 0.86400929 - time (sec): 1.43 - samples/sec: 4140.61 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:27:57,525 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:57,526 EPOCH 3 done: loss 0.8662 - lr: 0.100000
2023-05-15 21:27:58,166 DEV : loss 0.6227904558181763 - accuracy (micro avg)  0.8302
2023-05-15 21:27:58,178  - 0 epochs without improvement
2023-05-15 21:27:58,178 saving best model
2023-05-15 21:27:59,690 ----------------------------------------------------------------------------------------------------
2023-05-15 21:27:59,852 epoch 4 - iter 10/105 - loss 0.70690933 - time (sec): 0.16 - samples/sec: 3773.47 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:00,017 epoch 4 - iter 20/105 - loss 0.67778427 - time (sec): 0.33 - samples/sec: 3685.11 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:00,162 epoch 4 - iter 30/105 - loss 0.72460377 - time (sec): 0.47 - samples/sec: 3659.52 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:00,291 epoch 4 - iter 40/105 - loss 0.74667061 - time (sec): 0.60 - samples/sec: 3901.05 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:00,413 epoch 4 - iter 50/105 - loss 0.72456310 - time (sec): 0.72 - samples/sec: 4004.33 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:00,544 epoch 4 - iter 60/105 - loss 0.72599638 - time (sec): 0.85 - samples/sec: 4146.27 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:00,677 epoch 4 - iter 70/105 - loss 0.70078356 - time (sec): 0.99 - samples/sec: 4201.67 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:00,799 epoch 4 - iter 80/105 - loss 0.70384380 - time (sec): 1.11 - samples/sec: 4253.46 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:00,927 epoch 4 - iter 90/105 - loss 0.69472975 - time (sec): 1.24 - samples/sec: 4321.83 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:01,053 epoch 4 - iter 100/105 - loss 0.69011472 - time (sec): 1.36 - samples/sec: 4356.35 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:01,117 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:01,117 EPOCH 4 done: loss 0.6919 - lr: 0.100000
2023-05-15 21:28:02,126 DEV : loss 0.4872177243232727 - accuracy (micro avg)  0.8758
2023-05-15 21:28:02,138  - 0 epochs without improvement
2023-05-15 21:28:02,138 saving best model
2023-05-15 21:28:03,629 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:03,791 epoch 5 - iter 10/105 - loss 0.61365618 - time (sec): 0.16 - samples/sec: 3683.44 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:03,957 epoch 5 - iter 20/105 - loss 0.59538471 - time (sec): 0.33 - samples/sec: 3731.82 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:04,125 epoch 5 - iter 30/105 - loss 0.57676758 - time (sec): 0.50 - samples/sec: 3761.28 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:04,258 epoch 5 - iter 40/105 - loss 0.57542241 - time (sec): 0.63 - samples/sec: 3923.23 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:04,384 epoch 5 - iter 50/105 - loss 0.56359304 - time (sec): 0.76 - samples/sec: 4025.06 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:04,518 epoch 5 - iter 60/105 - loss 0.56716628 - time (sec): 0.89 - samples/sec: 4121.01 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:04,641 epoch 5 - iter 70/105 - loss 0.57142354 - time (sec): 1.01 - samples/sec: 4161.49 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:04,771 epoch 5 - iter 80/105 - loss 0.57661931 - time (sec): 1.14 - samples/sec: 4218.39 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:04,899 epoch 5 - iter 90/105 - loss 0.58855084 - time (sec): 1.27 - samples/sec: 4241.27 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:05,023 epoch 5 - iter 100/105 - loss 0.58498679 - time (sec): 1.39 - samples/sec: 4268.28 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:05,085 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:05,086 EPOCH 5 done: loss 0.5872 - lr: 0.100000
2023-05-15 21:28:05,762 DEV : loss 0.4932672083377838 - accuracy (micro avg)  0.8797
2023-05-15 21:28:05,774  - 0 epochs without improvement
2023-05-15 21:28:05,774 saving best model
2023-05-15 21:28:07,277 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:07,441 epoch 6 - iter 10/105 - loss 0.53339850 - time (sec): 0.16 - samples/sec: 3641.02 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:07,607 epoch 6 - iter 20/105 - loss 0.50043912 - time (sec): 0.33 - samples/sec: 3706.63 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:07,730 epoch 6 - iter 30/105 - loss 0.53429793 - time (sec): 0.45 - samples/sec: 4028.08 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:07,864 epoch 6 - iter 40/105 - loss 0.52955419 - time (sec): 0.59 - samples/sec: 4164.53 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:07,990 epoch 6 - iter 50/105 - loss 0.50279857 - time (sec): 0.71 - samples/sec: 4250.14 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:08,121 epoch 6 - iter 60/105 - loss 0.49586015 - time (sec): 0.84 - samples/sec: 4329.78 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:08,255 epoch 6 - iter 70/105 - loss 0.50257764 - time (sec): 0.98 - samples/sec: 4351.11 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:08,378 epoch 6 - iter 80/105 - loss 0.51000387 - time (sec): 1.10 - samples/sec: 4362.95 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:08,512 epoch 6 - iter 90/105 - loss 0.51874780 - time (sec): 1.23 - samples/sec: 4366.77 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:08,635 epoch 6 - iter 100/105 - loss 0.52402548 - time (sec): 1.36 - samples/sec: 4361.17 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:08,703 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:08,703 EPOCH 6 done: loss 0.5268 - lr: 0.100000
2023-05-15 21:28:09,375 DEV : loss 0.4175605773925781 - accuracy (micro avg)  0.8935
2023-05-15 21:28:09,387  - 0 epochs without improvement
2023-05-15 21:28:09,387 saving best model
2023-05-15 21:28:10,889 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:11,057 epoch 7 - iter 10/105 - loss 0.42810660 - time (sec): 0.17 - samples/sec: 3461.94 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:11,219 epoch 7 - iter 20/105 - loss 0.50242569 - time (sec): 0.33 - samples/sec: 3551.85 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:11,385 epoch 7 - iter 30/105 - loss 0.47000735 - time (sec): 0.50 - samples/sec: 3508.06 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:11,547 epoch 7 - iter 40/105 - loss 0.46886899 - time (sec): 0.66 - samples/sec: 3537.36 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:11,706 epoch 7 - iter 50/105 - loss 0.46468136 - time (sec): 0.82 - samples/sec: 3480.86 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:11,868 epoch 7 - iter 60/105 - loss 0.44673748 - time (sec): 0.98 - samples/sec: 3517.24 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:12,042 epoch 7 - iter 70/105 - loss 0.46160434 - time (sec): 1.15 - samples/sec: 3541.95 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:12,201 epoch 7 - iter 80/105 - loss 0.46348997 - time (sec): 1.31 - samples/sec: 3550.57 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:12,364 epoch 7 - iter 90/105 - loss 0.46535512 - time (sec): 1.47 - samples/sec: 3597.04 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:12,522 epoch 7 - iter 100/105 - loss 0.46283468 - time (sec): 1.63 - samples/sec: 3614.16 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:12,602 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:12,602 EPOCH 7 done: loss 0.4622 - lr: 0.100000
2023-05-15 21:28:13,404 DEV : loss 0.3824714422225952 - accuracy (micro avg)  0.9053
2023-05-15 21:28:13,416  - 0 epochs without improvement
2023-05-15 21:28:13,416 saving best model
2023-05-15 21:28:14,931 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:15,098 epoch 8 - iter 10/105 - loss 0.52925490 - time (sec): 0.17 - samples/sec: 3717.22 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:15,255 epoch 8 - iter 20/105 - loss 0.45622410 - time (sec): 0.32 - samples/sec: 3607.22 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:15,408 epoch 8 - iter 30/105 - loss 0.43188253 - time (sec): 0.48 - samples/sec: 3586.79 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:15,550 epoch 8 - iter 40/105 - loss 0.45116733 - time (sec): 0.62 - samples/sec: 3625.84 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:15,679 epoch 8 - iter 50/105 - loss 0.47200060 - time (sec): 0.75 - samples/sec: 3805.42 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:15,808 epoch 8 - iter 60/105 - loss 0.47657265 - time (sec): 0.88 - samples/sec: 3985.65 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:15,936 epoch 8 - iter 70/105 - loss 0.46800503 - time (sec): 1.00 - samples/sec: 4075.81 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:16,063 epoch 8 - iter 80/105 - loss 0.45493913 - time (sec): 1.13 - samples/sec: 4110.98 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:16,196 epoch 8 - iter 90/105 - loss 0.44503478 - time (sec): 1.26 - samples/sec: 4186.41 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:16,330 epoch 8 - iter 100/105 - loss 0.42980643 - time (sec): 1.40 - samples/sec: 4242.37 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:16,395 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:16,395 EPOCH 8 done: loss 0.4262 - lr: 0.100000
2023-05-15 21:28:17,065 DEV : loss 0.4457044303417206 - accuracy (micro avg)  0.8953
2023-05-15 21:28:17,078  - 1 epochs without improvement
2023-05-15 21:28:17,078 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:17,232 epoch 9 - iter 10/105 - loss 0.43019313 - time (sec): 0.15 - samples/sec: 3666.67 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:17,391 epoch 9 - iter 20/105 - loss 0.42917599 - time (sec): 0.31 - samples/sec: 3602.17 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:17,560 epoch 9 - iter 30/105 - loss 0.43572778 - time (sec): 0.48 - samples/sec: 3684.15 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:17,724 epoch 9 - iter 40/105 - loss 0.42423583 - time (sec): 0.65 - samples/sec: 3740.41 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:17,885 epoch 9 - iter 50/105 - loss 0.40547926 - time (sec): 0.81 - samples/sec: 3749.20 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:18,043 epoch 9 - iter 60/105 - loss 0.40662170 - time (sec): 0.96 - samples/sec: 3707.22 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:18,201 epoch 9 - iter 70/105 - loss 0.41125568 - time (sec): 1.12 - samples/sec: 3713.64 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:18,355 epoch 9 - iter 80/105 - loss 0.40591552 - time (sec): 1.28 - samples/sec: 3672.13 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:18,520 epoch 9 - iter 90/105 - loss 0.40433275 - time (sec): 1.44 - samples/sec: 3672.57 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:18,677 epoch 9 - iter 100/105 - loss 0.39568312 - time (sec): 1.60 - samples/sec: 3692.30 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:18,760 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:18,760 EPOCH 9 done: loss 0.3993 - lr: 0.100000
2023-05-15 21:28:19,433 DEV : loss 0.4055745005607605 - accuracy (micro avg)  0.9067
2023-05-15 21:28:19,445  - 0 epochs without improvement
2023-05-15 21:28:19,445 saving best model
2023-05-15 21:28:20,938 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:21,109 epoch 10 - iter 10/105 - loss 0.29233026 - time (sec): 0.17 - samples/sec: 3313.66 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:21,290 epoch 10 - iter 20/105 - loss 0.32887121 - time (sec): 0.35 - samples/sec: 3504.13 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:21,455 epoch 10 - iter 30/105 - loss 0.31719053 - time (sec): 0.52 - samples/sec: 3589.17 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:21,617 epoch 10 - iter 40/105 - loss 0.32200724 - time (sec): 0.68 - samples/sec: 3565.44 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:21,773 epoch 10 - iter 50/105 - loss 0.33617648 - time (sec): 0.83 - samples/sec: 3622.10 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:21,940 epoch 10 - iter 60/105 - loss 0.34266434 - time (sec): 1.00 - samples/sec: 3641.11 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:22,103 epoch 10 - iter 70/105 - loss 0.34127674 - time (sec): 1.16 - samples/sec: 3617.73 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:22,249 epoch 10 - iter 80/105 - loss 0.34237331 - time (sec): 1.31 - samples/sec: 3665.35 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:22,404 epoch 10 - iter 90/105 - loss 0.34708513 - time (sec): 1.46 - samples/sec: 3646.44 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:22,554 epoch 10 - iter 100/105 - loss 0.34402692 - time (sec): 1.62 - samples/sec: 3635.62 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:22,644 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:22,644 EPOCH 10 done: loss 0.3448 - lr: 0.100000
2023-05-15 21:28:23,321 DEV : loss 0.3692632019519806 - accuracy (micro avg)  0.9107
2023-05-15 21:28:23,333  - 0 epochs without improvement
2023-05-15 21:28:23,333 saving best model
2023-05-15 21:28:24,834 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:25,004 epoch 11 - iter 10/105 - loss 0.34743618 - time (sec): 0.17 - samples/sec: 3556.10 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:25,163 epoch 11 - iter 20/105 - loss 0.34974343 - time (sec): 0.33 - samples/sec: 3539.54 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:25,326 epoch 11 - iter 30/105 - loss 0.32850942 - time (sec): 0.49 - samples/sec: 3729.38 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:25,480 epoch 11 - iter 40/105 - loss 0.31337183 - time (sec): 0.65 - samples/sec: 3812.20 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:25,608 epoch 11 - iter 50/105 - loss 0.30750245 - time (sec): 0.77 - samples/sec: 3931.40 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:25,726 epoch 11 - iter 60/105 - loss 0.31700868 - time (sec): 0.89 - samples/sec: 3986.15 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:25,855 epoch 11 - iter 70/105 - loss 0.32409246 - time (sec): 1.02 - samples/sec: 4094.85 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:25,976 epoch 11 - iter 80/105 - loss 0.32874190 - time (sec): 1.14 - samples/sec: 4126.07 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:26,105 epoch 11 - iter 90/105 - loss 0.34002788 - time (sec): 1.27 - samples/sec: 4201.13 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:26,233 epoch 11 - iter 100/105 - loss 0.33955505 - time (sec): 1.40 - samples/sec: 4249.07 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:26,299 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:26,299 EPOCH 11 done: loss 0.3348 - lr: 0.100000
2023-05-15 21:28:27,102 DEV : loss 0.37659206986427307 - accuracy (micro avg)  0.9107
2023-05-15 21:28:27,114  - 1 epochs without improvement
2023-05-15 21:28:27,114 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:27,266 epoch 12 - iter 10/105 - loss 0.28334459 - time (sec): 0.15 - samples/sec: 3790.16 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:27,430 epoch 12 - iter 20/105 - loss 0.26780325 - time (sec): 0.32 - samples/sec: 3825.09 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:27,584 epoch 12 - iter 30/105 - loss 0.29387770 - time (sec): 0.47 - samples/sec: 3834.13 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:27,735 epoch 12 - iter 40/105 - loss 0.30666119 - time (sec): 0.62 - samples/sec: 3791.10 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:27,889 epoch 12 - iter 50/105 - loss 0.30770345 - time (sec): 0.77 - samples/sec: 3792.88 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:28,058 epoch 12 - iter 60/105 - loss 0.31630196 - time (sec): 0.94 - samples/sec: 3808.64 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:28,212 epoch 12 - iter 70/105 - loss 0.32114589 - time (sec): 1.10 - samples/sec: 3793.90 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:28,373 epoch 12 - iter 80/105 - loss 0.32696461 - time (sec): 1.26 - samples/sec: 3737.04 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:28,541 epoch 12 - iter 90/105 - loss 0.32321903 - time (sec): 1.43 - samples/sec: 3732.76 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:28,704 epoch 12 - iter 100/105 - loss 0.32507218 - time (sec): 1.59 - samples/sec: 3733.42 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:28,789 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:28,789 EPOCH 12 done: loss 0.3271 - lr: 0.100000
2023-05-15 21:28:29,460 DEV : loss 0.3771950602531433 - accuracy (micro avg)  0.9105
2023-05-15 21:28:29,472  - 2 epochs without improvement
2023-05-15 21:28:29,472 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:29,633 epoch 13 - iter 10/105 - loss 0.25558085 - time (sec): 0.16 - samples/sec: 3839.70 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:29,804 epoch 13 - iter 20/105 - loss 0.28810978 - time (sec): 0.33 - samples/sec: 3857.76 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:29,949 epoch 13 - iter 30/105 - loss 0.28257029 - time (sec): 0.48 - samples/sec: 3848.17 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:30,114 epoch 13 - iter 40/105 - loss 0.26605552 - time (sec): 0.64 - samples/sec: 3808.50 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:30,272 epoch 13 - iter 50/105 - loss 0.26701675 - time (sec): 0.80 - samples/sec: 3777.93 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:30,428 epoch 13 - iter 60/105 - loss 0.27406176 - time (sec): 0.96 - samples/sec: 3764.19 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:30,578 epoch 13 - iter 70/105 - loss 0.28434073 - time (sec): 1.11 - samples/sec: 3737.53 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:30,721 epoch 13 - iter 80/105 - loss 0.28311288 - time (sec): 1.25 - samples/sec: 3787.01 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:30,855 epoch 13 - iter 90/105 - loss 0.28752102 - time (sec): 1.38 - samples/sec: 3884.81 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:30,979 epoch 13 - iter 100/105 - loss 0.28659536 - time (sec): 1.51 - samples/sec: 3909.75 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:31,048 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:31,048 EPOCH 13 done: loss 0.2864 - lr: 0.100000
2023-05-15 21:28:31,726 DEV : loss 0.3924044966697693 - accuracy (micro avg)  0.9078
2023-05-15 21:28:31,738  - 3 epochs without improvement
2023-05-15 21:28:31,738 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:31,896 epoch 14 - iter 10/105 - loss 0.26458731 - time (sec): 0.16 - samples/sec: 4180.82 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:32,059 epoch 14 - iter 20/105 - loss 0.25633094 - time (sec): 0.32 - samples/sec: 3916.83 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:32,213 epoch 14 - iter 30/105 - loss 0.29500461 - time (sec): 0.47 - samples/sec: 3861.29 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:32,365 epoch 14 - iter 40/105 - loss 0.29691722 - time (sec): 0.63 - samples/sec: 3870.16 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:32,521 epoch 14 - iter 50/105 - loss 0.29505478 - time (sec): 0.78 - samples/sec: 3847.72 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:32,652 epoch 14 - iter 60/105 - loss 0.29782093 - time (sec): 0.91 - samples/sec: 3959.37 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:32,783 epoch 14 - iter 70/105 - loss 0.30191361 - time (sec): 1.04 - samples/sec: 4012.08 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:32,914 epoch 14 - iter 80/105 - loss 0.29182818 - time (sec): 1.17 - samples/sec: 4042.65 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:33,043 epoch 14 - iter 90/105 - loss 0.29334758 - time (sec): 1.30 - samples/sec: 4090.84 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:33,173 epoch 14 - iter 100/105 - loss 0.29052290 - time (sec): 1.43 - samples/sec: 4130.13 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:33,245 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:33,246 EPOCH 14 done: loss 0.2933 - lr: 0.100000
2023-05-15 21:28:34,072 DEV : loss 0.3501710295677185 - accuracy (micro avg)  0.9157
2023-05-15 21:28:34,085  - 0 epochs without improvement
2023-05-15 21:28:34,085 saving best model
2023-05-15 21:28:35,588 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:35,755 epoch 15 - iter 10/105 - loss 0.26030079 - time (sec): 0.17 - samples/sec: 3653.21 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:35,920 epoch 15 - iter 20/105 - loss 0.24296167 - time (sec): 0.33 - samples/sec: 3614.18 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:36,077 epoch 15 - iter 30/105 - loss 0.22735185 - time (sec): 0.49 - samples/sec: 3687.43 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:36,240 epoch 15 - iter 40/105 - loss 0.24004719 - time (sec): 0.65 - samples/sec: 3695.51 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:36,395 epoch 15 - iter 50/105 - loss 0.24872295 - time (sec): 0.81 - samples/sec: 3757.80 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:36,533 epoch 15 - iter 60/105 - loss 0.24078150 - time (sec): 0.94 - samples/sec: 3875.50 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:36,660 epoch 15 - iter 70/105 - loss 0.23893907 - time (sec): 1.07 - samples/sec: 3967.13 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:36,783 epoch 15 - iter 80/105 - loss 0.23832398 - time (sec): 1.19 - samples/sec: 4028.86 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:36,907 epoch 15 - iter 90/105 - loss 0.24174430 - time (sec): 1.32 - samples/sec: 4089.50 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:37,031 epoch 15 - iter 100/105 - loss 0.24719004 - time (sec): 1.44 - samples/sec: 4123.74 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:37,094 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:37,094 EPOCH 15 done: loss 0.2450 - lr: 0.100000
2023-05-15 21:28:37,764 DEV : loss 0.36203423142433167 - accuracy (micro avg)  0.9168
2023-05-15 21:28:37,776  - 0 epochs without improvement
2023-05-15 21:28:37,777 saving best model
2023-05-15 21:28:39,292 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:39,460 epoch 16 - iter 10/105 - loss 0.28751220 - time (sec): 0.17 - samples/sec: 3624.96 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:39,636 epoch 16 - iter 20/105 - loss 0.26365962 - time (sec): 0.34 - samples/sec: 3574.88 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:39,800 epoch 16 - iter 30/105 - loss 0.26388788 - time (sec): 0.51 - samples/sec: 3657.97 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:39,958 epoch 16 - iter 40/105 - loss 0.25961111 - time (sec): 0.67 - samples/sec: 3606.68 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:40,117 epoch 16 - iter 50/105 - loss 0.25009359 - time (sec): 0.82 - samples/sec: 3602.32 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:40,268 epoch 16 - iter 60/105 - loss 0.24935196 - time (sec): 0.98 - samples/sec: 3631.04 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:40,433 epoch 16 - iter 70/105 - loss 0.25583697 - time (sec): 1.14 - samples/sec: 3660.28 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:40,592 epoch 16 - iter 80/105 - loss 0.25461234 - time (sec): 1.30 - samples/sec: 3649.21 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:40,749 epoch 16 - iter 90/105 - loss 0.25699326 - time (sec): 1.46 - samples/sec: 3649.05 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:40,915 epoch 16 - iter 100/105 - loss 0.25579934 - time (sec): 1.62 - samples/sec: 3648.15 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:40,993 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:40,993 EPOCH 16 done: loss 0.2513 - lr: 0.100000
2023-05-15 21:28:41,665 DEV : loss 0.37685805559158325 - accuracy (micro avg)  0.9161
2023-05-15 21:28:41,677  - 1 epochs without improvement
2023-05-15 21:28:41,678 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:41,839 epoch 17 - iter 10/105 - loss 0.25334569 - time (sec): 0.16 - samples/sec: 3850.19 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:41,981 epoch 17 - iter 20/105 - loss 0.24333967 - time (sec): 0.30 - samples/sec: 3621.39 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:42,132 epoch 17 - iter 30/105 - loss 0.23545959 - time (sec): 0.45 - samples/sec: 3627.00 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:42,285 epoch 17 - iter 40/105 - loss 0.23830042 - time (sec): 0.61 - samples/sec: 3707.61 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:42,413 epoch 17 - iter 50/105 - loss 0.24765555 - time (sec): 0.74 - samples/sec: 3912.11 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:42,538 epoch 17 - iter 60/105 - loss 0.24520233 - time (sec): 0.86 - samples/sec: 4023.16 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:42,668 epoch 17 - iter 70/105 - loss 0.24207840 - time (sec): 0.99 - samples/sec: 4189.92 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:42,797 epoch 17 - iter 80/105 - loss 0.23634265 - time (sec): 1.12 - samples/sec: 4230.99 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:42,925 epoch 17 - iter 90/105 - loss 0.23920227 - time (sec): 1.25 - samples/sec: 4271.72 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:43,059 epoch 17 - iter 100/105 - loss 0.23783792 - time (sec): 1.38 - samples/sec: 4332.38 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:43,119 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:43,119 EPOCH 17 done: loss 0.2414 - lr: 0.100000
2023-05-15 21:28:43,790 DEV : loss 0.37420299649238586 - accuracy (micro avg)  0.9168
2023-05-15 21:28:43,802  - 2 epochs without improvement
2023-05-15 21:28:43,802 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:43,959 epoch 18 - iter 10/105 - loss 0.24061614 - time (sec): 0.16 - samples/sec: 4009.23 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:44,125 epoch 18 - iter 20/105 - loss 0.21762997 - time (sec): 0.32 - samples/sec: 3788.05 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:44,286 epoch 18 - iter 30/105 - loss 0.21340251 - time (sec): 0.48 - samples/sec: 3721.72 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:44,458 epoch 18 - iter 40/105 - loss 0.20776087 - time (sec): 0.66 - samples/sec: 3772.39 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:44,611 epoch 18 - iter 50/105 - loss 0.21267624 - time (sec): 0.81 - samples/sec: 3704.43 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:44,774 epoch 18 - iter 60/105 - loss 0.22464270 - time (sec): 0.97 - samples/sec: 3733.26 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:44,937 epoch 18 - iter 70/105 - loss 0.23068581 - time (sec): 1.13 - samples/sec: 3712.31 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:45,074 epoch 18 - iter 80/105 - loss 0.23007149 - time (sec): 1.27 - samples/sec: 3804.07 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:45,198 epoch 18 - iter 90/105 - loss 0.23322089 - time (sec): 1.40 - samples/sec: 3876.73 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:45,319 epoch 18 - iter 100/105 - loss 0.23723561 - time (sec): 1.52 - samples/sec: 3933.25 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:45,382 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:45,382 EPOCH 18 done: loss 0.2391 - lr: 0.100000
2023-05-15 21:28:46,199 DEV : loss 0.3612535893917084 - accuracy (micro avg)  0.9186
2023-05-15 21:28:46,211  - 0 epochs without improvement
2023-05-15 21:28:46,211 saving best model
2023-05-15 21:28:47,711 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:47,875 epoch 19 - iter 10/105 - loss 0.22788334 - time (sec): 0.16 - samples/sec: 3354.10 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:48,045 epoch 19 - iter 20/105 - loss 0.21366377 - time (sec): 0.33 - samples/sec: 3320.64 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:48,208 epoch 19 - iter 30/105 - loss 0.20840273 - time (sec): 0.50 - samples/sec: 3421.34 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:48,372 epoch 19 - iter 40/105 - loss 0.20833268 - time (sec): 0.66 - samples/sec: 3520.90 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:48,527 epoch 19 - iter 50/105 - loss 0.20487635 - time (sec): 0.82 - samples/sec: 3632.63 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:48,684 epoch 19 - iter 60/105 - loss 0.21416832 - time (sec): 0.97 - samples/sec: 3691.67 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:48,810 epoch 19 - iter 70/105 - loss 0.20718833 - time (sec): 1.10 - samples/sec: 3836.58 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:48,936 epoch 19 - iter 80/105 - loss 0.20743279 - time (sec): 1.22 - samples/sec: 3893.28 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:49,067 epoch 19 - iter 90/105 - loss 0.21436857 - time (sec): 1.36 - samples/sec: 3980.06 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:49,192 epoch 19 - iter 100/105 - loss 0.21507106 - time (sec): 1.48 - samples/sec: 4031.59 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:49,260 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:49,260 EPOCH 19 done: loss 0.2162 - lr: 0.100000
2023-05-15 21:28:49,929 DEV : loss 0.38264331221580505 - accuracy (micro avg)  0.9151
2023-05-15 21:28:49,941  - 1 epochs without improvement
2023-05-15 21:28:49,941 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:50,098 epoch 20 - iter 10/105 - loss 0.18692402 - time (sec): 0.16 - samples/sec: 3641.69 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:50,243 epoch 20 - iter 20/105 - loss 0.18505662 - time (sec): 0.30 - samples/sec: 3892.05 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:50,374 epoch 20 - iter 30/105 - loss 0.18862972 - time (sec): 0.43 - samples/sec: 4193.31 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:50,498 epoch 20 - iter 40/105 - loss 0.19222678 - time (sec): 0.56 - samples/sec: 4259.67 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:50,621 epoch 20 - iter 50/105 - loss 0.19376221 - time (sec): 0.68 - samples/sec: 4310.40 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:50,755 epoch 20 - iter 60/105 - loss 0.20313456 - time (sec): 0.81 - samples/sec: 4423.94 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:50,892 epoch 20 - iter 70/105 - loss 0.21258358 - time (sec): 0.95 - samples/sec: 4528.01 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:51,018 epoch 20 - iter 80/105 - loss 0.21183394 - time (sec): 1.08 - samples/sec: 4531.58 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:51,138 epoch 20 - iter 90/105 - loss 0.20992423 - time (sec): 1.20 - samples/sec: 4477.17 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:51,269 epoch 20 - iter 100/105 - loss 0.21406864 - time (sec): 1.33 - samples/sec: 4483.06 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:51,331 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:51,331 EPOCH 20 done: loss 0.2133 - lr: 0.100000
2023-05-15 21:28:52,001 DEV : loss 0.37900087237358093 - accuracy (micro avg)  0.9165
2023-05-15 21:28:52,014  - 2 epochs without improvement
2023-05-15 21:28:52,014 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:52,173 epoch 21 - iter 10/105 - loss 0.21559606 - time (sec): 0.16 - samples/sec: 3872.09 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:52,337 epoch 21 - iter 20/105 - loss 0.20114522 - time (sec): 0.32 - samples/sec: 4092.61 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:52,468 epoch 21 - iter 30/105 - loss 0.18528392 - time (sec): 0.45 - samples/sec: 4232.20 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:52,593 epoch 21 - iter 40/105 - loss 0.18452745 - time (sec): 0.58 - samples/sec: 4270.84 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:52,719 epoch 21 - iter 50/105 - loss 0.18896888 - time (sec): 0.71 - samples/sec: 4306.03 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:52,844 epoch 21 - iter 60/105 - loss 0.19499164 - time (sec): 0.83 - samples/sec: 4292.80 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:52,973 epoch 21 - iter 70/105 - loss 0.18755836 - time (sec): 0.96 - samples/sec: 4357.24 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:53,100 epoch 21 - iter 80/105 - loss 0.19307926 - time (sec): 1.09 - samples/sec: 4405.82 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:53,226 epoch 21 - iter 90/105 - loss 0.19528471 - time (sec): 1.21 - samples/sec: 4401.00 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:53,353 epoch 21 - iter 100/105 - loss 0.19506996 - time (sec): 1.34 - samples/sec: 4414.11 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:53,419 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:53,419 EPOCH 21 done: loss 0.1992 - lr: 0.100000
2023-05-15 21:28:54,225 DEV : loss 0.38944578170776367 - accuracy (micro avg)  0.9169
2023-05-15 21:28:54,237  - 3 epochs without improvement
2023-05-15 21:28:54,237 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:54,390 epoch 22 - iter 10/105 - loss 0.20993071 - time (sec): 0.15 - samples/sec: 4066.32 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:54,543 epoch 22 - iter 20/105 - loss 0.18478512 - time (sec): 0.31 - samples/sec: 3890.44 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:54,700 epoch 22 - iter 30/105 - loss 0.19947340 - time (sec): 0.46 - samples/sec: 3819.13 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:54,859 epoch 22 - iter 40/105 - loss 0.19935648 - time (sec): 0.62 - samples/sec: 3886.01 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:54,988 epoch 22 - iter 50/105 - loss 0.20181282 - time (sec): 0.75 - samples/sec: 3961.08 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:55,122 epoch 22 - iter 60/105 - loss 0.20980325 - time (sec): 0.88 - samples/sec: 4090.00 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:55,252 epoch 22 - iter 70/105 - loss 0.20766586 - time (sec): 1.01 - samples/sec: 4117.60 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:55,377 epoch 22 - iter 80/105 - loss 0.20463919 - time (sec): 1.14 - samples/sec: 4147.86 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:55,503 epoch 22 - iter 90/105 - loss 0.20755944 - time (sec): 1.27 - samples/sec: 4188.49 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:55,637 epoch 22 - iter 100/105 - loss 0.20476708 - time (sec): 1.40 - samples/sec: 4243.65 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:55,703 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:55,703 EPOCH 22 done: loss 0.2058 - lr: 0.100000
2023-05-15 21:28:56,376 DEV : loss 0.3886520266532898 - accuracy (micro avg)  0.9206
2023-05-15 21:28:56,388  - 0 epochs without improvement
2023-05-15 21:28:56,388 saving best model
2023-05-15 21:28:57,893 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:58,068 epoch 23 - iter 10/105 - loss 0.19153291 - time (sec): 0.17 - samples/sec: 3812.49 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:58,231 epoch 23 - iter 20/105 - loss 0.16076549 - time (sec): 0.34 - samples/sec: 3733.08 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:58,391 epoch 23 - iter 30/105 - loss 0.17099648 - time (sec): 0.50 - samples/sec: 3819.67 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:58,545 epoch 23 - iter 40/105 - loss 0.17438607 - time (sec): 0.65 - samples/sec: 3778.95 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:58,700 epoch 23 - iter 50/105 - loss 0.17411032 - time (sec): 0.81 - samples/sec: 3782.28 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:58,828 epoch 23 - iter 60/105 - loss 0.17241215 - time (sec): 0.93 - samples/sec: 3890.01 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:58,960 epoch 23 - iter 70/105 - loss 0.18217880 - time (sec): 1.07 - samples/sec: 3984.89 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:59,088 epoch 23 - iter 80/105 - loss 0.18175217 - time (sec): 1.19 - samples/sec: 4030.69 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:59,212 epoch 23 - iter 90/105 - loss 0.18610610 - time (sec): 1.32 - samples/sec: 4069.10 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:59,344 epoch 23 - iter 100/105 - loss 0.18463815 - time (sec): 1.45 - samples/sec: 4099.98 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:28:59,410 ----------------------------------------------------------------------------------------------------
2023-05-15 21:28:59,410 EPOCH 23 done: loss 0.1822 - lr: 0.100000
2023-05-15 21:29:00,084 DEV : loss 0.36885181069374084 - accuracy (micro avg)  0.9197
2023-05-15 21:29:00,097  - 1 epochs without improvement
2023-05-15 21:29:00,097 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:00,254 epoch 24 - iter 10/105 - loss 0.16730327 - time (sec): 0.16 - samples/sec: 3740.77 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:00,427 epoch 24 - iter 20/105 - loss 0.16385379 - time (sec): 0.33 - samples/sec: 3664.66 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:00,584 epoch 24 - iter 30/105 - loss 0.16301537 - time (sec): 0.49 - samples/sec: 3636.25 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:00,747 epoch 24 - iter 40/105 - loss 0.17770530 - time (sec): 0.65 - samples/sec: 3696.84 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:00,874 epoch 24 - iter 50/105 - loss 0.16391138 - time (sec): 0.78 - samples/sec: 3792.58 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:01,005 epoch 24 - iter 60/105 - loss 0.17546450 - time (sec): 0.91 - samples/sec: 3931.20 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:01,128 epoch 24 - iter 70/105 - loss 0.17562979 - time (sec): 1.03 - samples/sec: 4042.74 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:01,255 epoch 24 - iter 80/105 - loss 0.17835859 - time (sec): 1.16 - samples/sec: 4076.50 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:01,383 epoch 24 - iter 90/105 - loss 0.17677116 - time (sec): 1.29 - samples/sec: 4133.64 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:01,513 epoch 24 - iter 100/105 - loss 0.17858467 - time (sec): 1.42 - samples/sec: 4189.34 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:01,579 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:01,579 EPOCH 24 done: loss 0.1767 - lr: 0.100000
2023-05-15 21:29:02,389 DEV : loss 0.37519118189811707 - accuracy (micro avg)  0.9212
2023-05-15 21:29:02,401  - 0 epochs without improvement
2023-05-15 21:29:02,401 saving best model
2023-05-15 21:29:03,937 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:04,110 epoch 25 - iter 10/105 - loss 0.11805303 - time (sec): 0.17 - samples/sec: 3739.77 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:04,278 epoch 25 - iter 20/105 - loss 0.14216948 - time (sec): 0.34 - samples/sec: 3772.14 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:04,439 epoch 25 - iter 30/105 - loss 0.15601505 - time (sec): 0.50 - samples/sec: 3784.47 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:04,602 epoch 25 - iter 40/105 - loss 0.17032954 - time (sec): 0.67 - samples/sec: 3779.74 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:04,765 epoch 25 - iter 50/105 - loss 0.17585301 - time (sec): 0.83 - samples/sec: 3753.25 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:04,916 epoch 25 - iter 60/105 - loss 0.18142867 - time (sec): 0.98 - samples/sec: 3716.42 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:05,071 epoch 25 - iter 70/105 - loss 0.18596428 - time (sec): 1.13 - samples/sec: 3687.15 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:05,233 epoch 25 - iter 80/105 - loss 0.19091255 - time (sec): 1.30 - samples/sec: 3662.01 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:05,391 epoch 25 - iter 90/105 - loss 0.19683841 - time (sec): 1.45 - samples/sec: 3663.45 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:05,556 epoch 25 - iter 100/105 - loss 0.19210034 - time (sec): 1.62 - samples/sec: 3665.75 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:05,630 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:05,630 EPOCH 25 done: loss 0.1916 - lr: 0.100000
2023-05-15 21:29:06,302 DEV : loss 0.4038028419017792 - accuracy (micro avg)  0.919
2023-05-15 21:29:06,314  - 1 epochs without improvement
2023-05-15 21:29:06,314 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:06,463 epoch 26 - iter 10/105 - loss 0.23133541 - time (sec): 0.15 - samples/sec: 3868.62 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:06,622 epoch 26 - iter 20/105 - loss 0.22254807 - time (sec): 0.31 - samples/sec: 3844.98 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:06,788 epoch 26 - iter 30/105 - loss 0.20389609 - time (sec): 0.47 - samples/sec: 3715.95 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:06,949 epoch 26 - iter 40/105 - loss 0.19783433 - time (sec): 0.63 - samples/sec: 3742.26 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:07,112 epoch 26 - iter 50/105 - loss 0.19137730 - time (sec): 0.80 - samples/sec: 3719.80 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:07,266 epoch 26 - iter 60/105 - loss 0.18776910 - time (sec): 0.95 - samples/sec: 3715.59 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:07,425 epoch 26 - iter 70/105 - loss 0.18005685 - time (sec): 1.11 - samples/sec: 3739.70 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:07,584 epoch 26 - iter 80/105 - loss 0.17298422 - time (sec): 1.27 - samples/sec: 3768.56 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:07,708 epoch 26 - iter 90/105 - loss 0.18011843 - time (sec): 1.39 - samples/sec: 3809.45 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:07,840 epoch 26 - iter 100/105 - loss 0.18028208 - time (sec): 1.53 - samples/sec: 3873.21 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:07,909 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:07,909 EPOCH 26 done: loss 0.1815 - lr: 0.100000
2023-05-15 21:29:08,581 DEV : loss 0.3833042085170746 - accuracy (micro avg)  0.9165
2023-05-15 21:29:08,593  - 2 epochs without improvement
2023-05-15 21:29:08,593 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:08,749 epoch 27 - iter 10/105 - loss 0.14937348 - time (sec): 0.16 - samples/sec: 3789.39 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:08,918 epoch 27 - iter 20/105 - loss 0.16552775 - time (sec): 0.32 - samples/sec: 3704.49 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:09,091 epoch 27 - iter 30/105 - loss 0.16062877 - time (sec): 0.50 - samples/sec: 3704.97 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:09,252 epoch 27 - iter 40/105 - loss 0.17210393 - time (sec): 0.66 - samples/sec: 3731.70 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:09,382 epoch 27 - iter 50/105 - loss 0.17608282 - time (sec): 0.79 - samples/sec: 3950.03 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:09,499 epoch 27 - iter 60/105 - loss 0.17527874 - time (sec): 0.91 - samples/sec: 3986.92 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:09,624 epoch 27 - iter 70/105 - loss 0.16902907 - time (sec): 1.03 - samples/sec: 4045.54 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:09,746 epoch 27 - iter 80/105 - loss 0.17736055 - time (sec): 1.15 - samples/sec: 4100.51 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:09,874 epoch 27 - iter 90/105 - loss 0.17949764 - time (sec): 1.28 - samples/sec: 4159.39 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:10,005 epoch 27 - iter 100/105 - loss 0.17488097 - time (sec): 1.41 - samples/sec: 4200.05 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:10,070 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:10,070 EPOCH 27 done: loss 0.1752 - lr: 0.100000
2023-05-15 21:29:10,742 DEV : loss 0.40154093503952026 - accuracy (micro avg)  0.9191
2023-05-15 21:29:10,755  - 3 epochs without improvement
2023-05-15 21:29:10,755 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:10,916 epoch 28 - iter 10/105 - loss 0.14716557 - time (sec): 0.16 - samples/sec: 4006.33 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:11,074 epoch 28 - iter 20/105 - loss 0.14562331 - time (sec): 0.32 - samples/sec: 3926.32 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:11,231 epoch 28 - iter 30/105 - loss 0.13775937 - time (sec): 0.48 - samples/sec: 3861.22 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:11,388 epoch 28 - iter 40/105 - loss 0.14650236 - time (sec): 0.63 - samples/sec: 3868.72 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:11,552 epoch 28 - iter 50/105 - loss 0.15787049 - time (sec): 0.80 - samples/sec: 3829.39 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:11,706 epoch 28 - iter 60/105 - loss 0.16049621 - time (sec): 0.95 - samples/sec: 3837.66 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:11,861 epoch 28 - iter 70/105 - loss 0.16097042 - time (sec): 1.11 - samples/sec: 3780.49 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:12,020 epoch 28 - iter 80/105 - loss 0.15843466 - time (sec): 1.26 - samples/sec: 3762.19 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:12,174 epoch 28 - iter 90/105 - loss 0.16246614 - time (sec): 1.42 - samples/sec: 3759.14 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:12,330 epoch 28 - iter 100/105 - loss 0.16244747 - time (sec): 1.57 - samples/sec: 3744.50 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:12,421 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:12,421 EPOCH 28 done: loss 0.1658 - lr: 0.100000
2023-05-15 21:29:13,226 DEV : loss 0.3700896203517914 - accuracy (micro avg)  0.9233
2023-05-15 21:29:13,238  - 0 epochs without improvement
2023-05-15 21:29:13,238 saving best model
2023-05-15 21:29:14,742 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:14,915 epoch 29 - iter 10/105 - loss 0.19017553 - time (sec): 0.17 - samples/sec: 3425.98 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:15,078 epoch 29 - iter 20/105 - loss 0.17749714 - time (sec): 0.34 - samples/sec: 3402.37 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:15,229 epoch 29 - iter 30/105 - loss 0.16616767 - time (sec): 0.49 - samples/sec: 3573.19 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:15,365 epoch 29 - iter 40/105 - loss 0.16236268 - time (sec): 0.62 - samples/sec: 3704.61 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:15,485 epoch 29 - iter 50/105 - loss 0.16865431 - time (sec): 0.74 - samples/sec: 3801.47 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:15,618 epoch 29 - iter 60/105 - loss 0.17369814 - time (sec): 0.88 - samples/sec: 3945.68 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:15,747 epoch 29 - iter 70/105 - loss 0.17680836 - time (sec): 1.00 - samples/sec: 4061.10 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:15,878 epoch 29 - iter 80/105 - loss 0.17509046 - time (sec): 1.14 - samples/sec: 4114.98 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:16,007 epoch 29 - iter 90/105 - loss 0.17525190 - time (sec): 1.26 - samples/sec: 4165.68 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:16,140 epoch 29 - iter 100/105 - loss 0.17246774 - time (sec): 1.40 - samples/sec: 4236.10 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:16,207 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:16,207 EPOCH 29 done: loss 0.1727 - lr: 0.100000
2023-05-15 21:29:16,879 DEV : loss 0.4101061522960663 - accuracy (micro avg)  0.9205
2023-05-15 21:29:16,891  - 1 epochs without improvement
2023-05-15 21:29:16,891 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:17,040 epoch 30 - iter 10/105 - loss 0.12426246 - time (sec): 0.15 - samples/sec: 3641.65 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:17,194 epoch 30 - iter 20/105 - loss 0.17071040 - time (sec): 0.30 - samples/sec: 3819.79 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:17,358 epoch 30 - iter 30/105 - loss 0.16425334 - time (sec): 0.47 - samples/sec: 3694.92 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:17,520 epoch 30 - iter 40/105 - loss 0.16927551 - time (sec): 0.63 - samples/sec: 3729.25 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:17,650 epoch 30 - iter 50/105 - loss 0.16612028 - time (sec): 0.76 - samples/sec: 3912.22 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:17,782 epoch 30 - iter 60/105 - loss 0.16233095 - time (sec): 0.89 - samples/sec: 3977.99 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:17,907 epoch 30 - iter 70/105 - loss 0.16040288 - time (sec): 1.02 - samples/sec: 4047.22 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:18,035 epoch 30 - iter 80/105 - loss 0.16245743 - time (sec): 1.14 - samples/sec: 4098.75 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:18,159 epoch 30 - iter 90/105 - loss 0.16439274 - time (sec): 1.27 - samples/sec: 4129.95 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:18,300 epoch 30 - iter 100/105 - loss 0.16738507 - time (sec): 1.41 - samples/sec: 4203.40 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:18,367 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:18,367 EPOCH 30 done: loss 0.1668 - lr: 0.100000
2023-05-15 21:29:19,046 DEV : loss 0.40395256876945496 - accuracy (micro avg)  0.9234
2023-05-15 21:29:19,058  - 0 epochs without improvement
2023-05-15 21:29:19,059 saving best model
2023-05-15 21:29:20,549 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:20,721 epoch 31 - iter 10/105 - loss 0.17948015 - time (sec): 0.17 - samples/sec: 3359.44 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:20,888 epoch 31 - iter 20/105 - loss 0.16896526 - time (sec): 0.34 - samples/sec: 3340.57 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:21,043 epoch 31 - iter 30/105 - loss 0.15090088 - time (sec): 0.49 - samples/sec: 3470.71 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:21,195 epoch 31 - iter 40/105 - loss 0.14980059 - time (sec): 0.65 - samples/sec: 3531.56 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:21,349 epoch 31 - iter 50/105 - loss 0.15409275 - time (sec): 0.80 - samples/sec: 3568.19 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:21,510 epoch 31 - iter 60/105 - loss 0.16090804 - time (sec): 0.96 - samples/sec: 3606.67 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:21,674 epoch 31 - iter 70/105 - loss 0.17302166 - time (sec): 1.12 - samples/sec: 3636.50 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:21,827 epoch 31 - iter 80/105 - loss 0.17423631 - time (sec): 1.28 - samples/sec: 3660.33 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:21,986 epoch 31 - iter 90/105 - loss 0.16943651 - time (sec): 1.44 - samples/sec: 3668.25 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:22,152 epoch 31 - iter 100/105 - loss 0.17237235 - time (sec): 1.60 - samples/sec: 3678.88 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:22,241 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:22,241 EPOCH 31 done: loss 0.1689 - lr: 0.100000
2023-05-15 21:29:23,046 DEV : loss 0.4038907289505005 - accuracy (micro avg)  0.9215
2023-05-15 21:29:23,058  - 1 epochs without improvement
2023-05-15 21:29:23,058 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:23,221 epoch 32 - iter 10/105 - loss 0.13153856 - time (sec): 0.16 - samples/sec: 3930.46 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:23,386 epoch 32 - iter 20/105 - loss 0.12559417 - time (sec): 0.33 - samples/sec: 3898.98 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:23,540 epoch 32 - iter 30/105 - loss 0.13186378 - time (sec): 0.48 - samples/sec: 3882.91 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:23,706 epoch 32 - iter 40/105 - loss 0.14738308 - time (sec): 0.65 - samples/sec: 3803.48 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:23,860 epoch 32 - iter 50/105 - loss 0.14542930 - time (sec): 0.80 - samples/sec: 3822.17 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:24,013 epoch 32 - iter 60/105 - loss 0.14034148 - time (sec): 0.95 - samples/sec: 3772.52 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:24,162 epoch 32 - iter 70/105 - loss 0.14608369 - time (sec): 1.10 - samples/sec: 3736.89 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:24,322 epoch 32 - iter 80/105 - loss 0.14451093 - time (sec): 1.26 - samples/sec: 3765.69 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:24,452 epoch 32 - iter 90/105 - loss 0.14694589 - time (sec): 1.39 - samples/sec: 3835.94 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:24,578 epoch 32 - iter 100/105 - loss 0.14257599 - time (sec): 1.52 - samples/sec: 3899.13 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:24,645 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:24,645 EPOCH 32 done: loss 0.1465 - lr: 0.100000
2023-05-15 21:29:25,317 DEV : loss 0.4025160074234009 - accuracy (micro avg)  0.9226
2023-05-15 21:29:25,329  - 2 epochs without improvement
2023-05-15 21:29:25,330 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:25,489 epoch 33 - iter 10/105 - loss 0.11692645 - time (sec): 0.16 - samples/sec: 3837.74 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:25,661 epoch 33 - iter 20/105 - loss 0.11261481 - time (sec): 0.33 - samples/sec: 3799.27 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:25,818 epoch 33 - iter 30/105 - loss 0.12293677 - time (sec): 0.49 - samples/sec: 3747.77 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:25,963 epoch 33 - iter 40/105 - loss 0.12200511 - time (sec): 0.63 - samples/sec: 3718.00 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:26,124 epoch 33 - iter 50/105 - loss 0.13014301 - time (sec): 0.79 - samples/sec: 3746.61 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:26,275 epoch 33 - iter 60/105 - loss 0.13305045 - time (sec): 0.95 - samples/sec: 3739.00 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:26,432 epoch 33 - iter 70/105 - loss 0.14157664 - time (sec): 1.10 - samples/sec: 3697.61 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:26,561 epoch 33 - iter 80/105 - loss 0.14296348 - time (sec): 1.23 - samples/sec: 3733.29 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:26,693 epoch 33 - iter 90/105 - loss 0.14671581 - time (sec): 1.36 - samples/sec: 3850.84 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:26,823 epoch 33 - iter 100/105 - loss 0.14655293 - time (sec): 1.49 - samples/sec: 3942.58 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:26,890 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:26,890 EPOCH 33 done: loss 0.1479 - lr: 0.100000
2023-05-15 21:29:27,561 DEV : loss 0.3954732418060303 - accuracy (micro avg)  0.9216
2023-05-15 21:29:27,574  - 3 epochs without improvement
2023-05-15 21:29:27,574 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:27,737 epoch 34 - iter 10/105 - loss 0.18187757 - time (sec): 0.16 - samples/sec: 3964.56 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:27,885 epoch 34 - iter 20/105 - loss 0.15943059 - time (sec): 0.31 - samples/sec: 3973.64 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:28,012 epoch 34 - iter 30/105 - loss 0.18407409 - time (sec): 0.44 - samples/sec: 4058.33 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:28,142 epoch 34 - iter 40/105 - loss 0.17524787 - time (sec): 0.57 - samples/sec: 4222.45 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:28,274 epoch 34 - iter 50/105 - loss 0.17493872 - time (sec): 0.70 - samples/sec: 4284.73 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:28,402 epoch 34 - iter 60/105 - loss 0.16409113 - time (sec): 0.83 - samples/sec: 4326.04 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:28,533 epoch 34 - iter 70/105 - loss 0.16252810 - time (sec): 0.96 - samples/sec: 4330.98 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:28,657 epoch 34 - iter 80/105 - loss 0.16419135 - time (sec): 1.08 - samples/sec: 4339.85 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:28,784 epoch 34 - iter 90/105 - loss 0.15812127 - time (sec): 1.21 - samples/sec: 4404.06 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:28,909 epoch 34 - iter 100/105 - loss 0.15864944 - time (sec): 1.33 - samples/sec: 4432.72 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:28,976 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:28,976 EPOCH 34 done: loss 0.1557 - lr: 0.100000
2023-05-15 21:29:29,783 DEV : loss 0.40327951312065125 - accuracy (micro avg)  0.9237
2023-05-15 21:29:29,795  - 0 epochs without improvement
2023-05-15 21:29:29,795 saving best model
2023-05-15 21:29:31,337 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:31,498 epoch 35 - iter 10/105 - loss 0.11365990 - time (sec): 0.16 - samples/sec: 3319.82 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:31,666 epoch 35 - iter 20/105 - loss 0.15195260 - time (sec): 0.33 - samples/sec: 3488.78 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:31,838 epoch 35 - iter 30/105 - loss 0.15559549 - time (sec): 0.50 - samples/sec: 3580.59 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:31,993 epoch 35 - iter 40/105 - loss 0.14416862 - time (sec): 0.66 - samples/sec: 3531.45 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:32,155 epoch 35 - iter 50/105 - loss 0.15059920 - time (sec): 0.82 - samples/sec: 3596.12 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:32,320 epoch 35 - iter 60/105 - loss 0.15134831 - time (sec): 0.98 - samples/sec: 3625.10 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:32,479 epoch 35 - iter 70/105 - loss 0.16104896 - time (sec): 1.14 - samples/sec: 3645.90 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:32,641 epoch 35 - iter 80/105 - loss 0.16009531 - time (sec): 1.30 - samples/sec: 3666.99 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:32,792 epoch 35 - iter 90/105 - loss 0.15922036 - time (sec): 1.45 - samples/sec: 3666.51 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:32,948 epoch 35 - iter 100/105 - loss 0.16487008 - time (sec): 1.61 - samples/sec: 3675.78 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:33,017 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:33,017 EPOCH 35 done: loss 0.1689 - lr: 0.100000
2023-05-15 21:29:33,692 DEV : loss 0.39580753445625305 - accuracy (micro avg)  0.9242
2023-05-15 21:29:33,704  - 0 epochs without improvement
2023-05-15 21:29:33,704 saving best model
2023-05-15 21:29:35,238 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:35,407 epoch 36 - iter 10/105 - loss 0.12681475 - time (sec): 0.17 - samples/sec: 3601.05 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:35,573 epoch 36 - iter 20/105 - loss 0.13123437 - time (sec): 0.34 - samples/sec: 3565.71 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:35,738 epoch 36 - iter 30/105 - loss 0.12768796 - time (sec): 0.50 - samples/sec: 3642.53 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:35,899 epoch 36 - iter 40/105 - loss 0.12212410 - time (sec): 0.66 - samples/sec: 3679.92 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:36,048 epoch 36 - iter 50/105 - loss 0.12578326 - time (sec): 0.81 - samples/sec: 3698.25 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:36,209 epoch 36 - iter 60/105 - loss 0.12588040 - time (sec): 0.97 - samples/sec: 3697.77 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:36,364 epoch 36 - iter 70/105 - loss 0.13398106 - time (sec): 1.13 - samples/sec: 3700.07 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:36,525 epoch 36 - iter 80/105 - loss 0.13156100 - time (sec): 1.29 - samples/sec: 3718.51 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:36,671 epoch 36 - iter 90/105 - loss 0.13473477 - time (sec): 1.43 - samples/sec: 3739.14 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:36,800 epoch 36 - iter 100/105 - loss 0.13714964 - time (sec): 1.56 - samples/sec: 3799.85 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:36,866 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:36,866 EPOCH 36 done: loss 0.1372 - lr: 0.100000
2023-05-15 21:29:37,544 DEV : loss 0.4013025164604187 - accuracy (micro avg)  0.9229
2023-05-15 21:29:37,556  - 1 epochs without improvement
2023-05-15 21:29:37,556 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:37,717 epoch 37 - iter 10/105 - loss 0.17773883 - time (sec): 0.16 - samples/sec: 3833.71 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:37,876 epoch 37 - iter 20/105 - loss 0.13500703 - time (sec): 0.32 - samples/sec: 3767.94 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:38,032 epoch 37 - iter 30/105 - loss 0.13968275 - time (sec): 0.48 - samples/sec: 3886.64 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:38,193 epoch 37 - iter 40/105 - loss 0.13029297 - time (sec): 0.64 - samples/sec: 3799.45 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:38,344 epoch 37 - iter 50/105 - loss 0.13293094 - time (sec): 0.79 - samples/sec: 3762.98 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:38,502 epoch 37 - iter 60/105 - loss 0.13691739 - time (sec): 0.95 - samples/sec: 3754.09 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:38,646 epoch 37 - iter 70/105 - loss 0.13779774 - time (sec): 1.09 - samples/sec: 3831.76 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:38,779 epoch 37 - iter 80/105 - loss 0.13771613 - time (sec): 1.22 - samples/sec: 3888.86 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:38,908 epoch 37 - iter 90/105 - loss 0.13710010 - time (sec): 1.35 - samples/sec: 3953.89 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:39,036 epoch 37 - iter 100/105 - loss 0.14205918 - time (sec): 1.48 - samples/sec: 3993.58 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:39,103 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:39,103 EPOCH 37 done: loss 0.1438 - lr: 0.100000
2023-05-15 21:29:39,810 DEV : loss 0.415070116519928 - accuracy (micro avg)  0.9219
2023-05-15 21:29:39,822  - 2 epochs without improvement
2023-05-15 21:29:39,822 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:39,994 epoch 38 - iter 10/105 - loss 0.20516581 - time (sec): 0.17 - samples/sec: 3954.67 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:40,149 epoch 38 - iter 20/105 - loss 0.18937984 - time (sec): 0.33 - samples/sec: 3794.82 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:40,309 epoch 38 - iter 30/105 - loss 0.15848597 - time (sec): 0.49 - samples/sec: 3844.54 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:40,456 epoch 38 - iter 40/105 - loss 0.16197244 - time (sec): 0.63 - samples/sec: 3741.04 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:40,622 epoch 38 - iter 50/105 - loss 0.16457943 - time (sec): 0.80 - samples/sec: 3794.73 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:40,781 epoch 38 - iter 60/105 - loss 0.16114683 - time (sec): 0.96 - samples/sec: 3756.04 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:40,938 epoch 38 - iter 70/105 - loss 0.16400070 - time (sec): 1.12 - samples/sec: 3776.19 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:41,085 epoch 38 - iter 80/105 - loss 0.16291289 - time (sec): 1.26 - samples/sec: 3786.55 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:41,217 epoch 38 - iter 90/105 - loss 0.15458326 - time (sec): 1.40 - samples/sec: 3846.21 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:41,342 epoch 38 - iter 100/105 - loss 0.15470577 - time (sec): 1.52 - samples/sec: 3906.01 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:41,404 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:41,404 EPOCH 38 done: loss 0.1544 - lr: 0.100000
2023-05-15 21:29:42,219 DEV : loss 0.41072356700897217 - accuracy (micro avg)  0.9237
2023-05-15 21:29:42,231  - 3 epochs without improvement
2023-05-15 21:29:42,231 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:42,389 epoch 39 - iter 10/105 - loss 0.12626244 - time (sec): 0.16 - samples/sec: 3574.30 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:42,519 epoch 39 - iter 20/105 - loss 0.10437065 - time (sec): 0.29 - samples/sec: 3972.66 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:42,644 epoch 39 - iter 30/105 - loss 0.11959350 - time (sec): 0.41 - samples/sec: 4001.79 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:42,780 epoch 39 - iter 40/105 - loss 0.11522957 - time (sec): 0.55 - samples/sec: 4191.23 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:42,913 epoch 39 - iter 50/105 - loss 0.11583460 - time (sec): 0.68 - samples/sec: 4244.33 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:43,039 epoch 39 - iter 60/105 - loss 0.12341357 - time (sec): 0.81 - samples/sec: 4253.17 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:43,166 epoch 39 - iter 70/105 - loss 0.12221358 - time (sec): 0.93 - samples/sec: 4329.07 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:43,297 epoch 39 - iter 80/105 - loss 0.12490269 - time (sec): 1.07 - samples/sec: 4363.97 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:43,434 epoch 39 - iter 90/105 - loss 0.12776413 - time (sec): 1.20 - samples/sec: 4432.09 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:43,562 epoch 39 - iter 100/105 - loss 0.12640114 - time (sec): 1.33 - samples/sec: 4439.21 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:43,632 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:43,632 EPOCH 39 done: loss 0.1244 - lr: 0.100000
2023-05-15 21:29:44,318 DEV : loss 0.41140687465667725 - accuracy (micro avg)  0.9249
2023-05-15 21:29:44,330  - 0 epochs without improvement
2023-05-15 21:29:44,330 saving best model
2023-05-15 21:29:45,827 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:45,986 epoch 40 - iter 10/105 - loss 0.14795394 - time (sec): 0.16 - samples/sec: 3761.38 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:46,147 epoch 40 - iter 20/105 - loss 0.11385624 - time (sec): 0.32 - samples/sec: 3628.90 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:46,280 epoch 40 - iter 30/105 - loss 0.10842964 - time (sec): 0.45 - samples/sec: 3770.91 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:46,419 epoch 40 - iter 40/105 - loss 0.11264527 - time (sec): 0.59 - samples/sec: 4036.28 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:46,543 epoch 40 - iter 50/105 - loss 0.11175295 - time (sec): 0.72 - samples/sec: 4150.69 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:46,666 epoch 40 - iter 60/105 - loss 0.11581112 - time (sec): 0.84 - samples/sec: 4231.95 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:46,796 epoch 40 - iter 70/105 - loss 0.11738182 - time (sec): 0.97 - samples/sec: 4282.03 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:46,925 epoch 40 - iter 80/105 - loss 0.12190069 - time (sec): 1.10 - samples/sec: 4315.15 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:47,050 epoch 40 - iter 90/105 - loss 0.12535250 - time (sec): 1.22 - samples/sec: 4350.73 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:47,180 epoch 40 - iter 100/105 - loss 0.12320186 - time (sec): 1.35 - samples/sec: 4363.43 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:47,251 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:47,251 EPOCH 40 done: loss 0.1229 - lr: 0.100000
2023-05-15 21:29:47,931 DEV : loss 0.4322431683540344 - accuracy (micro avg)  0.9233
2023-05-15 21:29:47,945  - 1 epochs without improvement
2023-05-15 21:29:47,945 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:48,108 epoch 41 - iter 10/105 - loss 0.13569982 - time (sec): 0.16 - samples/sec: 3739.71 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:48,255 epoch 41 - iter 20/105 - loss 0.12269332 - time (sec): 0.31 - samples/sec: 3765.33 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:48,414 epoch 41 - iter 30/105 - loss 0.12385531 - time (sec): 0.47 - samples/sec: 3683.30 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:48,576 epoch 41 - iter 40/105 - loss 0.12539752 - time (sec): 0.63 - samples/sec: 3765.40 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:48,742 epoch 41 - iter 50/105 - loss 0.13098185 - time (sec): 0.80 - samples/sec: 3827.90 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:48,907 epoch 41 - iter 60/105 - loss 0.13122920 - time (sec): 0.96 - samples/sec: 3754.83 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:49,070 epoch 41 - iter 70/105 - loss 0.13069313 - time (sec): 1.12 - samples/sec: 3760.26 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:49,202 epoch 41 - iter 80/105 - loss 0.12619702 - time (sec): 1.26 - samples/sec: 3872.70 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:49,332 epoch 41 - iter 90/105 - loss 0.12526959 - time (sec): 1.39 - samples/sec: 3931.93 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:49,457 epoch 41 - iter 100/105 - loss 0.12524086 - time (sec): 1.51 - samples/sec: 3954.19 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:49,519 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:49,519 EPOCH 41 done: loss 0.1237 - lr: 0.100000
2023-05-15 21:29:50,333 DEV : loss 0.42178237438201904 - accuracy (micro avg)  0.9234
2023-05-15 21:29:50,345  - 2 epochs without improvement
2023-05-15 21:29:50,345 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:50,508 epoch 42 - iter 10/105 - loss 0.13757911 - time (sec): 0.16 - samples/sec: 3642.86 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:50,675 epoch 42 - iter 20/105 - loss 0.12492803 - time (sec): 0.33 - samples/sec: 3727.46 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:50,835 epoch 42 - iter 30/105 - loss 0.12348396 - time (sec): 0.49 - samples/sec: 3722.72 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:50,989 epoch 42 - iter 40/105 - loss 0.12797827 - time (sec): 0.64 - samples/sec: 3679.45 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:51,152 epoch 42 - iter 50/105 - loss 0.12548280 - time (sec): 0.81 - samples/sec: 3696.99 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:51,309 epoch 42 - iter 60/105 - loss 0.11989623 - time (sec): 0.96 - samples/sec: 3749.20 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:51,473 epoch 42 - iter 70/105 - loss 0.12276712 - time (sec): 1.13 - samples/sec: 3762.06 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:51,627 epoch 42 - iter 80/105 - loss 0.12305123 - time (sec): 1.28 - samples/sec: 3763.51 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:51,780 epoch 42 - iter 90/105 - loss 0.11996811 - time (sec): 1.43 - samples/sec: 3766.57 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:51,934 epoch 42 - iter 100/105 - loss 0.12027167 - time (sec): 1.59 - samples/sec: 3740.47 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:52,014 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:52,014 EPOCH 42 done: loss 0.1211 - lr: 0.100000
2023-05-15 21:29:52,690 DEV : loss 0.42137962579727173 - accuracy (micro avg)  0.9237
2023-05-15 21:29:52,704  - 3 epochs without improvement
2023-05-15 21:29:52,704 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:52,871 epoch 43 - iter 10/105 - loss 0.10634964 - time (sec): 0.17 - samples/sec: 3955.16 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:53,030 epoch 43 - iter 20/105 - loss 0.13513222 - time (sec): 0.33 - samples/sec: 3909.74 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:53,182 epoch 43 - iter 30/105 - loss 0.13494545 - time (sec): 0.48 - samples/sec: 3942.48 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:53,341 epoch 43 - iter 40/105 - loss 0.12992074 - time (sec): 0.64 - samples/sec: 3855.31 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:53,492 epoch 43 - iter 50/105 - loss 0.13240206 - time (sec): 0.79 - samples/sec: 3849.44 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:53,658 epoch 43 - iter 60/105 - loss 0.13833264 - time (sec): 0.95 - samples/sec: 3793.30 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:53,816 epoch 43 - iter 70/105 - loss 0.13098679 - time (sec): 1.11 - samples/sec: 3794.22 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:53,977 epoch 43 - iter 80/105 - loss 0.12497234 - time (sec): 1.27 - samples/sec: 3781.76 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:54,136 epoch 43 - iter 90/105 - loss 0.12201816 - time (sec): 1.43 - samples/sec: 3748.20 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:54,300 epoch 43 - iter 100/105 - loss 0.12714844 - time (sec): 1.60 - samples/sec: 3725.40 - lr: 0.100000 - momentum: 0.000000
2023-05-15 21:29:54,377 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:54,377 EPOCH 43 done: loss 0.1301 - lr: 0.100000
2023-05-15 21:29:55,050 DEV : loss 0.4403139650821686 - accuracy (micro avg)  0.9215
2023-05-15 21:29:55,061  - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.05]
2023-05-15 21:29:55,062 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:55,215 epoch 44 - iter 10/105 - loss 0.11070459 - time (sec): 0.15 - samples/sec: 3645.21 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:55,376 epoch 44 - iter 20/105 - loss 0.12333639 - time (sec): 0.31 - samples/sec: 3957.75 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:55,540 epoch 44 - iter 30/105 - loss 0.12356758 - time (sec): 0.48 - samples/sec: 3879.69 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:55,688 epoch 44 - iter 40/105 - loss 0.12342539 - time (sec): 0.63 - samples/sec: 3764.11 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:55,844 epoch 44 - iter 50/105 - loss 0.12214429 - time (sec): 0.78 - samples/sec: 3710.79 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:56,007 epoch 44 - iter 60/105 - loss 0.12046220 - time (sec): 0.95 - samples/sec: 3746.26 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:56,169 epoch 44 - iter 70/105 - loss 0.12088169 - time (sec): 1.11 - samples/sec: 3733.92 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:56,304 epoch 44 - iter 80/105 - loss 0.11876220 - time (sec): 1.24 - samples/sec: 3789.32 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:56,435 epoch 44 - iter 90/105 - loss 0.12117199 - time (sec): 1.37 - samples/sec: 3869.54 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:56,560 epoch 44 - iter 100/105 - loss 0.11797416 - time (sec): 1.50 - samples/sec: 3946.47 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:56,632 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:56,632 EPOCH 44 done: loss 0.1203 - lr: 0.050000
2023-05-15 21:29:57,437 DEV : loss 0.4078696370124817 - accuracy (micro avg)  0.9234
2023-05-15 21:29:57,450  - 1 epochs without improvement
2023-05-15 21:29:57,450 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:57,598 epoch 45 - iter 10/105 - loss 0.12240043 - time (sec): 0.15 - samples/sec: 3917.08 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:57,760 epoch 45 - iter 20/105 - loss 0.12615430 - time (sec): 0.31 - samples/sec: 3888.29 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:57,924 epoch 45 - iter 30/105 - loss 0.11850485 - time (sec): 0.47 - samples/sec: 3763.81 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:58,082 epoch 45 - iter 40/105 - loss 0.11245046 - time (sec): 0.63 - samples/sec: 3766.75 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:58,241 epoch 45 - iter 50/105 - loss 0.11174340 - time (sec): 0.79 - samples/sec: 3729.85 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:58,403 epoch 45 - iter 60/105 - loss 0.11224976 - time (sec): 0.95 - samples/sec: 3692.49 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:58,563 epoch 45 - iter 70/105 - loss 0.11477408 - time (sec): 1.11 - samples/sec: 3693.73 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:58,732 epoch 45 - iter 80/105 - loss 0.11335217 - time (sec): 1.28 - samples/sec: 3710.14 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:58,870 epoch 45 - iter 90/105 - loss 0.11603745 - time (sec): 1.42 - samples/sec: 3801.20 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:58,997 epoch 45 - iter 100/105 - loss 0.11783449 - time (sec): 1.55 - samples/sec: 3827.74 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:29:59,067 ----------------------------------------------------------------------------------------------------
2023-05-15 21:29:59,067 EPOCH 45 done: loss 0.1205 - lr: 0.050000
2023-05-15 21:29:59,738 DEV : loss 0.42651140689849854 - accuracy (micro avg)  0.9262
2023-05-15 21:29:59,750  - 0 epochs without improvement
2023-05-15 21:29:59,750 saving best model
2023-05-15 21:30:01,303 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:01,462 epoch 46 - iter 10/105 - loss 0.07757579 - time (sec): 0.16 - samples/sec: 3575.33 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:01,635 epoch 46 - iter 20/105 - loss 0.10217992 - time (sec): 0.33 - samples/sec: 3588.55 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:01,786 epoch 46 - iter 30/105 - loss 0.08863273 - time (sec): 0.48 - samples/sec: 3626.34 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:01,938 epoch 46 - iter 40/105 - loss 0.09988256 - time (sec): 0.64 - samples/sec: 3916.20 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:02,068 epoch 46 - iter 50/105 - loss 0.10114883 - time (sec): 0.77 - samples/sec: 3999.98 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:02,194 epoch 46 - iter 60/105 - loss 0.09889308 - time (sec): 0.89 - samples/sec: 4105.93 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:02,314 epoch 46 - iter 70/105 - loss 0.10302309 - time (sec): 1.01 - samples/sec: 4154.63 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:02,447 epoch 46 - iter 80/105 - loss 0.10177534 - time (sec): 1.14 - samples/sec: 4239.99 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:02,574 epoch 46 - iter 90/105 - loss 0.10155713 - time (sec): 1.27 - samples/sec: 4239.72 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:02,706 epoch 46 - iter 100/105 - loss 0.10475806 - time (sec): 1.40 - samples/sec: 4257.72 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:02,771 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:02,771 EPOCH 46 done: loss 0.1047 - lr: 0.050000
2023-05-15 21:30:03,442 DEV : loss 0.42641904950141907 - accuracy (micro avg)  0.9244
2023-05-15 21:30:03,455  - 1 epochs without improvement
2023-05-15 21:30:03,455 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:03,604 epoch 47 - iter 10/105 - loss 0.12040184 - time (sec): 0.15 - samples/sec: 3787.05 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:03,767 epoch 47 - iter 20/105 - loss 0.10311603 - time (sec): 0.31 - samples/sec: 3748.26 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:03,924 epoch 47 - iter 30/105 - loss 0.09732495 - time (sec): 0.47 - samples/sec: 3790.45 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:04,059 epoch 47 - iter 40/105 - loss 0.10650195 - time (sec): 0.60 - samples/sec: 3867.01 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:04,187 epoch 47 - iter 50/105 - loss 0.10210912 - time (sec): 0.73 - samples/sec: 3995.66 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:04,316 epoch 47 - iter 60/105 - loss 0.10302949 - time (sec): 0.86 - samples/sec: 4087.62 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:04,443 epoch 47 - iter 70/105 - loss 0.09700798 - time (sec): 0.99 - samples/sec: 4161.11 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:04,568 epoch 47 - iter 80/105 - loss 0.09692983 - time (sec): 1.11 - samples/sec: 4210.37 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:04,691 epoch 47 - iter 90/105 - loss 0.09707526 - time (sec): 1.24 - samples/sec: 4230.86 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:04,826 epoch 47 - iter 100/105 - loss 0.09855310 - time (sec): 1.37 - samples/sec: 4304.02 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:04,895 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:04,895 EPOCH 47 done: loss 0.0997 - lr: 0.050000
2023-05-15 21:30:05,699 DEV : loss 0.4337489902973175 - accuracy (micro avg)  0.9248
2023-05-15 21:30:05,711  - 2 epochs without improvement
2023-05-15 21:30:05,711 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:05,868 epoch 48 - iter 10/105 - loss 0.09515060 - time (sec): 0.16 - samples/sec: 3527.84 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:06,012 epoch 48 - iter 20/105 - loss 0.09041357 - time (sec): 0.30 - samples/sec: 3751.47 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:06,172 epoch 48 - iter 30/105 - loss 0.08203553 - time (sec): 0.46 - samples/sec: 3713.72 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:06,342 epoch 48 - iter 40/105 - loss 0.08376034 - time (sec): 0.63 - samples/sec: 3837.15 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:06,504 epoch 48 - iter 50/105 - loss 0.08316523 - time (sec): 0.79 - samples/sec: 3744.48 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:06,639 epoch 48 - iter 60/105 - loss 0.08656137 - time (sec): 0.93 - samples/sec: 3854.43 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:06,771 epoch 48 - iter 70/105 - loss 0.09194897 - time (sec): 1.06 - samples/sec: 3914.28 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:06,899 epoch 48 - iter 80/105 - loss 0.09788336 - time (sec): 1.19 - samples/sec: 3988.64 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:07,031 epoch 48 - iter 90/105 - loss 0.10283371 - time (sec): 1.32 - samples/sec: 4077.49 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:07,151 epoch 48 - iter 100/105 - loss 0.10118860 - time (sec): 1.44 - samples/sec: 4109.14 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:07,217 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:07,217 EPOCH 48 done: loss 0.1001 - lr: 0.050000
2023-05-15 21:30:07,889 DEV : loss 0.43896815180778503 - accuracy (micro avg)  0.9234
2023-05-15 21:30:07,901  - 3 epochs without improvement
2023-05-15 21:30:07,901 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:08,064 epoch 49 - iter 10/105 - loss 0.10410754 - time (sec): 0.16 - samples/sec: 3487.74 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:08,225 epoch 49 - iter 20/105 - loss 0.08994063 - time (sec): 0.32 - samples/sec: 3541.51 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:08,386 epoch 49 - iter 30/105 - loss 0.09238845 - time (sec): 0.49 - samples/sec: 3686.53 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:08,541 epoch 49 - iter 40/105 - loss 0.09027927 - time (sec): 0.64 - samples/sec: 3669.78 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:08,707 epoch 49 - iter 50/105 - loss 0.09236148 - time (sec): 0.81 - samples/sec: 3593.40 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:08,872 epoch 49 - iter 60/105 - loss 0.09347906 - time (sec): 0.97 - samples/sec: 3589.49 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:09,042 epoch 49 - iter 70/105 - loss 0.09866856 - time (sec): 1.14 - samples/sec: 3585.54 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:09,198 epoch 49 - iter 80/105 - loss 0.10140349 - time (sec): 1.30 - samples/sec: 3582.01 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:09,334 epoch 49 - iter 90/105 - loss 0.10317846 - time (sec): 1.43 - samples/sec: 3683.47 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:09,469 epoch 49 - iter 100/105 - loss 0.10346212 - time (sec): 1.57 - samples/sec: 3800.14 - lr: 0.050000 - momentum: 0.000000
2023-05-15 21:30:09,529 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:09,529 EPOCH 49 done: loss 0.1022 - lr: 0.050000
2023-05-15 21:30:10,202 DEV : loss 0.4417934715747833 - accuracy (micro avg)  0.9247
2023-05-15 21:30:10,214  - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.025]
2023-05-15 21:30:10,214 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:10,374 epoch 50 - iter 10/105 - loss 0.10155014 - time (sec): 0.16 - samples/sec: 3410.51 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:10,528 epoch 50 - iter 20/105 - loss 0.09421830 - time (sec): 0.31 - samples/sec: 3582.91 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:10,683 epoch 50 - iter 30/105 - loss 0.08456918 - time (sec): 0.47 - samples/sec: 3597.25 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:10,838 epoch 50 - iter 40/105 - loss 0.08748446 - time (sec): 0.62 - samples/sec: 3703.35 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:11,003 epoch 50 - iter 50/105 - loss 0.08878558 - time (sec): 0.79 - samples/sec: 3695.58 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:11,158 epoch 50 - iter 60/105 - loss 0.08631747 - time (sec): 0.94 - samples/sec: 3650.32 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:11,322 epoch 50 - iter 70/105 - loss 0.08712266 - time (sec): 1.11 - samples/sec: 3653.78 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:11,489 epoch 50 - iter 80/105 - loss 0.08719100 - time (sec): 1.27 - samples/sec: 3674.25 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:11,646 epoch 50 - iter 90/105 - loss 0.08340004 - time (sec): 1.43 - samples/sec: 3690.59 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:11,800 epoch 50 - iter 100/105 - loss 0.08787648 - time (sec): 1.59 - samples/sec: 3705.52 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:11,888 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:11,888 EPOCH 50 done: loss 0.0871 - lr: 0.025000
2023-05-15 21:30:12,560 DEV : loss 0.43998345732688904 - accuracy (micro avg)  0.9248
2023-05-15 21:30:12,572  - 1 epochs without improvement
2023-05-15 21:30:12,572 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:12,714 epoch 51 - iter 10/105 - loss 0.08250246 - time (sec): 0.14 - samples/sec: 3380.14 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:12,885 epoch 51 - iter 20/105 - loss 0.07379753 - time (sec): 0.31 - samples/sec: 3591.82 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:13,052 epoch 51 - iter 30/105 - loss 0.08802722 - time (sec): 0.48 - samples/sec: 3742.11 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:13,207 epoch 51 - iter 40/105 - loss 0.09066879 - time (sec): 0.63 - samples/sec: 3831.15 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:13,357 epoch 51 - iter 50/105 - loss 0.08766548 - time (sec): 0.78 - samples/sec: 3935.49 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:13,486 epoch 51 - iter 60/105 - loss 0.08422949 - time (sec): 0.91 - samples/sec: 4058.85 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:13,616 epoch 51 - iter 70/105 - loss 0.08933460 - time (sec): 1.04 - samples/sec: 4091.37 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:13,740 epoch 51 - iter 80/105 - loss 0.09256634 - time (sec): 1.17 - samples/sec: 4130.07 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:13,871 epoch 51 - iter 90/105 - loss 0.09040581 - time (sec): 1.30 - samples/sec: 4153.59 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:13,996 epoch 51 - iter 100/105 - loss 0.08850502 - time (sec): 1.42 - samples/sec: 4178.50 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:14,060 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:14,060 EPOCH 51 done: loss 0.0889 - lr: 0.025000
2023-05-15 21:30:14,868 DEV : loss 0.4459802806377411 - accuracy (micro avg)  0.9266
2023-05-15 21:30:14,880  - 0 epochs without improvement
2023-05-15 21:30:14,880 saving best model
2023-05-15 21:30:16,376 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:16,538 epoch 52 - iter 10/105 - loss 0.08790156 - time (sec): 0.16 - samples/sec: 3551.43 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:16,709 epoch 52 - iter 20/105 - loss 0.09278011 - time (sec): 0.33 - samples/sec: 3493.27 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:16,874 epoch 52 - iter 30/105 - loss 0.09091522 - time (sec): 0.50 - samples/sec: 3689.32 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:17,041 epoch 52 - iter 40/105 - loss 0.08797693 - time (sec): 0.66 - samples/sec: 3717.58 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:17,199 epoch 52 - iter 50/105 - loss 0.09140983 - time (sec): 0.82 - samples/sec: 3722.50 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:17,362 epoch 52 - iter 60/105 - loss 0.08783638 - time (sec): 0.99 - samples/sec: 3691.63 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:17,521 epoch 52 - iter 70/105 - loss 0.09044234 - time (sec): 1.14 - samples/sec: 3683.92 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:17,683 epoch 52 - iter 80/105 - loss 0.09242811 - time (sec): 1.31 - samples/sec: 3702.29 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:17,837 epoch 52 - iter 90/105 - loss 0.09060020 - time (sec): 1.46 - samples/sec: 3683.11 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:17,993 epoch 52 - iter 100/105 - loss 0.09166655 - time (sec): 1.62 - samples/sec: 3671.75 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:18,075 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:18,075 EPOCH 52 done: loss 0.0923 - lr: 0.025000
2023-05-15 21:30:18,746 DEV : loss 0.44730234146118164 - accuracy (micro avg)  0.9249
2023-05-15 21:30:18,758  - 1 epochs without improvement
2023-05-15 21:30:18,758 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:18,905 epoch 53 - iter 10/105 - loss 0.05499141 - time (sec): 0.15 - samples/sec: 3610.68 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:19,062 epoch 53 - iter 20/105 - loss 0.07059527 - time (sec): 0.30 - samples/sec: 3575.99 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:19,223 epoch 53 - iter 30/105 - loss 0.08327849 - time (sec): 0.46 - samples/sec: 3646.81 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:19,371 epoch 53 - iter 40/105 - loss 0.08524775 - time (sec): 0.61 - samples/sec: 3626.90 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:19,531 epoch 53 - iter 50/105 - loss 0.08712003 - time (sec): 0.77 - samples/sec: 3684.46 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:19,703 epoch 53 - iter 60/105 - loss 0.09188637 - time (sec): 0.94 - samples/sec: 3692.12 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:19,858 epoch 53 - iter 70/105 - loss 0.09597465 - time (sec): 1.10 - samples/sec: 3664.92 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:20,023 epoch 53 - iter 80/105 - loss 0.09462198 - time (sec): 1.26 - samples/sec: 3699.23 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:20,155 epoch 53 - iter 90/105 - loss 0.09487981 - time (sec): 1.40 - samples/sec: 3804.17 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:20,285 epoch 53 - iter 100/105 - loss 0.09549078 - time (sec): 1.53 - samples/sec: 3868.82 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:20,356 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:20,356 EPOCH 53 done: loss 0.0979 - lr: 0.025000
2023-05-15 21:30:21,036 DEV : loss 0.4442404806613922 - accuracy (micro avg)  0.9267
2023-05-15 21:30:21,048  - 0 epochs without improvement
2023-05-15 21:30:21,048 saving best model
2023-05-15 21:30:22,517 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:22,691 epoch 54 - iter 10/105 - loss 0.08495571 - time (sec): 0.17 - samples/sec: 3491.90 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:22,854 epoch 54 - iter 20/105 - loss 0.08501973 - time (sec): 0.34 - samples/sec: 3554.35 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:23,021 epoch 54 - iter 30/105 - loss 0.09743852 - time (sec): 0.50 - samples/sec: 3672.88 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:23,172 epoch 54 - iter 40/105 - loss 0.09451822 - time (sec): 0.65 - samples/sec: 3701.29 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:23,309 epoch 54 - iter 50/105 - loss 0.08993559 - time (sec): 0.79 - samples/sec: 3787.10 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:23,443 epoch 54 - iter 60/105 - loss 0.08867751 - time (sec): 0.93 - samples/sec: 3908.89 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:23,567 epoch 54 - iter 70/105 - loss 0.08874145 - time (sec): 1.05 - samples/sec: 3967.35 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:23,694 epoch 54 - iter 80/105 - loss 0.08686806 - time (sec): 1.18 - samples/sec: 4038.98 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:23,825 epoch 54 - iter 90/105 - loss 0.09092987 - time (sec): 1.31 - samples/sec: 4116.77 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:23,946 epoch 54 - iter 100/105 - loss 0.08850743 - time (sec): 1.43 - samples/sec: 4145.41 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:24,013 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:24,013 EPOCH 54 done: loss 0.0894 - lr: 0.025000
2023-05-15 21:30:24,822 DEV : loss 0.44815778732299805 - accuracy (micro avg)  0.9267
2023-05-15 21:30:24,834  - 1 epochs without improvement
2023-05-15 21:30:24,835 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:24,998 epoch 55 - iter 10/105 - loss 0.11340921 - time (sec): 0.16 - samples/sec: 3674.32 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:25,161 epoch 55 - iter 20/105 - loss 0.10073815 - time (sec): 0.33 - samples/sec: 3971.60 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:25,306 epoch 55 - iter 30/105 - loss 0.10311474 - time (sec): 0.47 - samples/sec: 3810.26 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:25,472 epoch 55 - iter 40/105 - loss 0.09085139 - time (sec): 0.64 - samples/sec: 3794.66 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:25,628 epoch 55 - iter 50/105 - loss 0.10506698 - time (sec): 0.79 - samples/sec: 3785.43 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:25,784 epoch 55 - iter 60/105 - loss 0.10309018 - time (sec): 0.95 - samples/sec: 3817.32 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:25,935 epoch 55 - iter 70/105 - loss 0.10555289 - time (sec): 1.10 - samples/sec: 3784.28 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:26,092 epoch 55 - iter 80/105 - loss 0.10515112 - time (sec): 1.26 - samples/sec: 3806.57 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:26,237 epoch 55 - iter 90/105 - loss 0.10222695 - time (sec): 1.40 - samples/sec: 3807.05 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:26,390 epoch 55 - iter 100/105 - loss 0.09704806 - time (sec): 1.56 - samples/sec: 3812.01 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:26,471 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:26,472 EPOCH 55 done: loss 0.0994 - lr: 0.025000
2023-05-15 21:30:27,160 DEV : loss 0.4603947103023529 - accuracy (micro avg)  0.9273
2023-05-15 21:30:27,172  - 0 epochs without improvement
2023-05-15 21:30:27,172 saving best model
2023-05-15 21:30:28,679 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:28,850 epoch 56 - iter 10/105 - loss 0.08967255 - time (sec): 0.17 - samples/sec: 3319.85 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:29,019 epoch 56 - iter 20/105 - loss 0.06883085 - time (sec): 0.34 - samples/sec: 3569.10 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:29,172 epoch 56 - iter 30/105 - loss 0.07577760 - time (sec): 0.49 - samples/sec: 3659.54 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:29,318 epoch 56 - iter 40/105 - loss 0.08986062 - time (sec): 0.64 - samples/sec: 3724.69 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:29,476 epoch 56 - iter 50/105 - loss 0.08512969 - time (sec): 0.80 - samples/sec: 3717.46 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:29,634 epoch 56 - iter 60/105 - loss 0.09044687 - time (sec): 0.95 - samples/sec: 3722.60 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:29,786 epoch 56 - iter 70/105 - loss 0.09543241 - time (sec): 1.11 - samples/sec: 3771.58 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:29,950 epoch 56 - iter 80/105 - loss 0.09562096 - time (sec): 1.27 - samples/sec: 3734.26 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:30,107 epoch 56 - iter 90/105 - loss 0.09317804 - time (sec): 1.43 - samples/sec: 3722.42 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:30,255 epoch 56 - iter 100/105 - loss 0.09849251 - time (sec): 1.58 - samples/sec: 3748.79 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:30,337 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:30,337 EPOCH 56 done: loss 0.0992 - lr: 0.025000
2023-05-15 21:30:31,005 DEV : loss 0.45674797892570496 - accuracy (micro avg)  0.9253
2023-05-15 21:30:31,018  - 1 epochs without improvement
2023-05-15 21:30:31,018 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:31,172 epoch 57 - iter 10/105 - loss 0.02979771 - time (sec): 0.15 - samples/sec: 3689.67 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:31,326 epoch 57 - iter 20/105 - loss 0.06583308 - time (sec): 0.31 - samples/sec: 3619.17 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:31,490 epoch 57 - iter 30/105 - loss 0.07248027 - time (sec): 0.47 - samples/sec: 3718.69 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:31,635 epoch 57 - iter 40/105 - loss 0.06894876 - time (sec): 0.62 - samples/sec: 3819.61 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:31,759 epoch 57 - iter 50/105 - loss 0.06672600 - time (sec): 0.74 - samples/sec: 3965.13 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:31,887 epoch 57 - iter 60/105 - loss 0.07004378 - time (sec): 0.87 - samples/sec: 4066.85 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:32,012 epoch 57 - iter 70/105 - loss 0.07138190 - time (sec): 0.99 - samples/sec: 4149.22 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:32,140 epoch 57 - iter 80/105 - loss 0.07725337 - time (sec): 1.12 - samples/sec: 4193.19 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:32,274 epoch 57 - iter 90/105 - loss 0.07986006 - time (sec): 1.26 - samples/sec: 4260.96 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:32,401 epoch 57 - iter 100/105 - loss 0.08470070 - time (sec): 1.38 - samples/sec: 4325.36 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:32,469 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:32,469 EPOCH 57 done: loss 0.0849 - lr: 0.025000
2023-05-15 21:30:33,267 DEV : loss 0.4544132947921753 - accuracy (micro avg)  0.9276
2023-05-15 21:30:33,279  - 0 epochs without improvement
2023-05-15 21:30:33,280 saving best model
2023-05-15 21:30:34,740 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:34,910 epoch 58 - iter 10/105 - loss 0.09034536 - time (sec): 0.17 - samples/sec: 3468.88 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:35,063 epoch 58 - iter 20/105 - loss 0.11065231 - time (sec): 0.32 - samples/sec: 3467.45 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:35,224 epoch 58 - iter 30/105 - loss 0.10656638 - time (sec): 0.48 - samples/sec: 3512.14 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:35,385 epoch 58 - iter 40/105 - loss 0.09482706 - time (sec): 0.64 - samples/sec: 3652.50 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:35,550 epoch 58 - iter 50/105 - loss 0.08608497 - time (sec): 0.81 - samples/sec: 3591.58 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:35,701 epoch 58 - iter 60/105 - loss 0.08756389 - time (sec): 0.96 - samples/sec: 3609.97 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:35,829 epoch 58 - iter 70/105 - loss 0.09090279 - time (sec): 1.09 - samples/sec: 3715.99 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:35,955 epoch 58 - iter 80/105 - loss 0.08859676 - time (sec): 1.21 - samples/sec: 3827.45 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:36,086 epoch 58 - iter 90/105 - loss 0.08564067 - time (sec): 1.35 - samples/sec: 3907.50 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:36,220 epoch 58 - iter 100/105 - loss 0.08297622 - time (sec): 1.48 - samples/sec: 3985.55 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:36,290 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:36,291 EPOCH 58 done: loss 0.0848 - lr: 0.025000
2023-05-15 21:30:36,963 DEV : loss 0.4505839943885803 - accuracy (micro avg)  0.9269
2023-05-15 21:30:36,976  - 1 epochs without improvement
2023-05-15 21:30:36,976 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:37,141 epoch 59 - iter 10/105 - loss 0.09168406 - time (sec): 0.16 - samples/sec: 3648.56 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:37,304 epoch 59 - iter 20/105 - loss 0.09114142 - time (sec): 0.33 - samples/sec: 3729.72 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:37,467 epoch 59 - iter 30/105 - loss 0.08044970 - time (sec): 0.49 - samples/sec: 3824.77 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:37,612 epoch 59 - iter 40/105 - loss 0.08763567 - time (sec): 0.64 - samples/sec: 3884.63 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:37,740 epoch 59 - iter 50/105 - loss 0.08274090 - time (sec): 0.76 - samples/sec: 3976.87 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:37,869 epoch 59 - iter 60/105 - loss 0.08555697 - time (sec): 0.89 - samples/sec: 4118.47 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:37,989 epoch 59 - iter 70/105 - loss 0.08258492 - time (sec): 1.01 - samples/sec: 4109.92 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:38,112 epoch 59 - iter 80/105 - loss 0.08036995 - time (sec): 1.14 - samples/sec: 4127.41 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:38,242 epoch 59 - iter 90/105 - loss 0.08190745 - time (sec): 1.27 - samples/sec: 4182.97 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:38,371 epoch 59 - iter 100/105 - loss 0.08489307 - time (sec): 1.40 - samples/sec: 4245.97 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:38,437 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:38,437 EPOCH 59 done: loss 0.0831 - lr: 0.025000
2023-05-15 21:30:39,126 DEV : loss 0.449642151594162 - accuracy (micro avg)  0.9287
2023-05-15 21:30:39,139  - 0 epochs without improvement
2023-05-15 21:30:39,139 saving best model
2023-05-15 21:30:40,634 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:40,810 epoch 60 - iter 10/105 - loss 0.07294341 - time (sec): 0.18 - samples/sec: 3747.11 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:40,975 epoch 60 - iter 20/105 - loss 0.07297189 - time (sec): 0.34 - samples/sec: 3538.07 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:41,132 epoch 60 - iter 30/105 - loss 0.08514902 - time (sec): 0.50 - samples/sec: 3549.28 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:41,259 epoch 60 - iter 40/105 - loss 0.09686086 - time (sec): 0.62 - samples/sec: 3697.61 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:41,391 epoch 60 - iter 50/105 - loss 0.09001737 - time (sec): 0.76 - samples/sec: 3913.06 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:41,509 epoch 60 - iter 60/105 - loss 0.08812331 - time (sec): 0.87 - samples/sec: 3958.10 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:41,640 epoch 60 - iter 70/105 - loss 0.08630214 - time (sec): 1.01 - samples/sec: 4044.86 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:41,771 epoch 60 - iter 80/105 - loss 0.08846802 - time (sec): 1.14 - samples/sec: 4130.01 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:41,904 epoch 60 - iter 90/105 - loss 0.08861147 - time (sec): 1.27 - samples/sec: 4195.05 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:42,036 epoch 60 - iter 100/105 - loss 0.08885317 - time (sec): 1.40 - samples/sec: 4207.76 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:42,108 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:42,108 EPOCH 60 done: loss 0.0874 - lr: 0.025000
2023-05-15 21:30:42,795 DEV : loss 0.4487907290458679 - accuracy (micro avg)  0.9277
2023-05-15 21:30:42,808  - 1 epochs without improvement
2023-05-15 21:30:42,808 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:42,973 epoch 61 - iter 10/105 - loss 0.08015160 - time (sec): 0.16 - samples/sec: 3824.57 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:43,123 epoch 61 - iter 20/105 - loss 0.06057929 - time (sec): 0.31 - samples/sec: 3784.72 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:43,275 epoch 61 - iter 30/105 - loss 0.06926931 - time (sec): 0.47 - samples/sec: 3624.66 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:43,427 epoch 61 - iter 40/105 - loss 0.07085607 - time (sec): 0.62 - samples/sec: 3670.65 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:43,588 epoch 61 - iter 50/105 - loss 0.07059675 - time (sec): 0.78 - samples/sec: 3724.09 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:43,723 epoch 61 - iter 60/105 - loss 0.07058916 - time (sec): 0.91 - samples/sec: 3895.12 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:43,845 epoch 61 - iter 70/105 - loss 0.07125948 - time (sec): 1.04 - samples/sec: 3951.28 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:43,978 epoch 61 - iter 80/105 - loss 0.07479688 - time (sec): 1.17 - samples/sec: 4037.05 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:44,111 epoch 61 - iter 90/105 - loss 0.07313734 - time (sec): 1.30 - samples/sec: 4092.27 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:44,241 epoch 61 - iter 100/105 - loss 0.07799588 - time (sec): 1.43 - samples/sec: 4126.79 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:44,312 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:44,312 EPOCH 61 done: loss 0.0760 - lr: 0.025000
2023-05-15 21:30:45,140 DEV : loss 0.4585801362991333 - accuracy (micro avg)  0.927
2023-05-15 21:30:45,153  - 2 epochs without improvement
2023-05-15 21:30:45,153 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:45,308 epoch 62 - iter 10/105 - loss 0.09004574 - time (sec): 0.15 - samples/sec: 3944.17 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:45,466 epoch 62 - iter 20/105 - loss 0.07939139 - time (sec): 0.31 - samples/sec: 3844.98 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:45,595 epoch 62 - iter 30/105 - loss 0.06903933 - time (sec): 0.44 - samples/sec: 4024.22 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:45,726 epoch 62 - iter 40/105 - loss 0.07174227 - time (sec): 0.57 - samples/sec: 4081.11 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:45,861 epoch 62 - iter 50/105 - loss 0.07977434 - time (sec): 0.71 - samples/sec: 4136.79 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:45,992 epoch 62 - iter 60/105 - loss 0.08341777 - time (sec): 0.84 - samples/sec: 4264.15 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:46,125 epoch 62 - iter 70/105 - loss 0.08811842 - time (sec): 0.97 - samples/sec: 4249.91 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:46,252 epoch 62 - iter 80/105 - loss 0.08805974 - time (sec): 1.10 - samples/sec: 4258.69 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:46,386 epoch 62 - iter 90/105 - loss 0.08797355 - time (sec): 1.23 - samples/sec: 4307.63 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:46,521 epoch 62 - iter 100/105 - loss 0.08905213 - time (sec): 1.37 - samples/sec: 4343.29 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:46,587 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:46,587 EPOCH 62 done: loss 0.0876 - lr: 0.025000
2023-05-15 21:30:47,277 DEV : loss 0.45762529969215393 - accuracy (micro avg)  0.9273
2023-05-15 21:30:47,289  - 3 epochs without improvement
2023-05-15 21:30:47,290 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:47,455 epoch 63 - iter 10/105 - loss 0.13866874 - time (sec): 0.17 - samples/sec: 3764.67 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:47,616 epoch 63 - iter 20/105 - loss 0.11774307 - time (sec): 0.33 - samples/sec: 3679.75 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:47,773 epoch 63 - iter 30/105 - loss 0.10617288 - time (sec): 0.48 - samples/sec: 3634.33 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:47,903 epoch 63 - iter 40/105 - loss 0.10151569 - time (sec): 0.61 - samples/sec: 3826.73 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:48,036 epoch 63 - iter 50/105 - loss 0.10331057 - time (sec): 0.75 - samples/sec: 3977.39 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:48,162 epoch 63 - iter 60/105 - loss 0.09765511 - time (sec): 0.87 - samples/sec: 4060.06 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:48,297 epoch 63 - iter 70/105 - loss 0.09812690 - time (sec): 1.01 - samples/sec: 4107.99 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:48,422 epoch 63 - iter 80/105 - loss 0.10264448 - time (sec): 1.13 - samples/sec: 4126.25 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:48,555 epoch 63 - iter 90/105 - loss 0.09810914 - time (sec): 1.27 - samples/sec: 4178.06 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:48,688 epoch 63 - iter 100/105 - loss 0.09693463 - time (sec): 1.40 - samples/sec: 4235.89 - lr: 0.025000 - momentum: 0.000000
2023-05-15 21:30:48,757 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:48,757 EPOCH 63 done: loss 0.0968 - lr: 0.025000
2023-05-15 21:30:49,446 DEV : loss 0.4547846019268036 - accuracy (micro avg)  0.9287
2023-05-15 21:30:49,459  - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.0125]
2023-05-15 21:30:49,459 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:49,621 epoch 64 - iter 10/105 - loss 0.10850674 - time (sec): 0.16 - samples/sec: 3610.44 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:49,789 epoch 64 - iter 20/105 - loss 0.09252579 - time (sec): 0.33 - samples/sec: 3587.76 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:49,937 epoch 64 - iter 30/105 - loss 0.08403065 - time (sec): 0.48 - samples/sec: 3635.53 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:50,095 epoch 64 - iter 40/105 - loss 0.08705889 - time (sec): 0.64 - samples/sec: 3693.26 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:50,249 epoch 64 - iter 50/105 - loss 0.08250025 - time (sec): 0.79 - samples/sec: 3689.38 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:50,380 epoch 64 - iter 60/105 - loss 0.07915800 - time (sec): 0.92 - samples/sec: 3822.31 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:50,505 epoch 64 - iter 70/105 - loss 0.08280372 - time (sec): 1.05 - samples/sec: 3914.92 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:50,632 epoch 64 - iter 80/105 - loss 0.08043726 - time (sec): 1.17 - samples/sec: 4009.72 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:50,760 epoch 64 - iter 90/105 - loss 0.07739270 - time (sec): 1.30 - samples/sec: 4072.08 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:50,892 epoch 64 - iter 100/105 - loss 0.07765963 - time (sec): 1.43 - samples/sec: 4135.64 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:50,958 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:50,958 EPOCH 64 done: loss 0.0806 - lr: 0.012500
2023-05-15 21:30:51,770 DEV : loss 0.4491409659385681 - accuracy (micro avg)  0.927
2023-05-15 21:30:51,782  - 1 epochs without improvement
2023-05-15 21:30:51,782 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:51,936 epoch 65 - iter 10/105 - loss 0.09353496 - time (sec): 0.15 - samples/sec: 3789.70 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:52,097 epoch 65 - iter 20/105 - loss 0.08407092 - time (sec): 0.31 - samples/sec: 3859.28 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:52,230 epoch 65 - iter 30/105 - loss 0.07108789 - time (sec): 0.45 - samples/sec: 3987.09 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:52,358 epoch 65 - iter 40/105 - loss 0.07327740 - time (sec): 0.58 - samples/sec: 4156.74 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:52,485 epoch 65 - iter 50/105 - loss 0.08257736 - time (sec): 0.70 - samples/sec: 4220.56 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:52,609 epoch 65 - iter 60/105 - loss 0.08262387 - time (sec): 0.83 - samples/sec: 4243.88 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:52,737 epoch 65 - iter 70/105 - loss 0.07754773 - time (sec): 0.95 - samples/sec: 4326.77 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:52,864 epoch 65 - iter 80/105 - loss 0.07909466 - time (sec): 1.08 - samples/sec: 4357.30 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:53,001 epoch 65 - iter 90/105 - loss 0.07937441 - time (sec): 1.22 - samples/sec: 4386.93 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:53,128 epoch 65 - iter 100/105 - loss 0.07883681 - time (sec): 1.35 - samples/sec: 4390.93 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:53,196 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:53,196 EPOCH 65 done: loss 0.0776 - lr: 0.012500
2023-05-15 21:30:53,867 DEV : loss 0.45759317278862 - accuracy (micro avg)  0.9269
2023-05-15 21:30:53,879  - 2 epochs without improvement
2023-05-15 21:30:53,880 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:54,039 epoch 66 - iter 10/105 - loss 0.08663228 - time (sec): 0.16 - samples/sec: 3779.37 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:54,208 epoch 66 - iter 20/105 - loss 0.08645371 - time (sec): 0.33 - samples/sec: 3807.32 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:54,361 epoch 66 - iter 30/105 - loss 0.08114543 - time (sec): 0.48 - samples/sec: 3776.59 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:54,513 epoch 66 - iter 40/105 - loss 0.08233481 - time (sec): 0.63 - samples/sec: 3703.76 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:54,669 epoch 66 - iter 50/105 - loss 0.08185727 - time (sec): 0.79 - samples/sec: 3738.31 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:54,800 epoch 66 - iter 60/105 - loss 0.08319666 - time (sec): 0.92 - samples/sec: 3843.32 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:54,930 epoch 66 - iter 70/105 - loss 0.08390522 - time (sec): 1.05 - samples/sec: 3922.32 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:55,059 epoch 66 - iter 80/105 - loss 0.08176695 - time (sec): 1.18 - samples/sec: 4003.55 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:55,193 epoch 66 - iter 90/105 - loss 0.07874792 - time (sec): 1.31 - samples/sec: 4082.74 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:55,320 epoch 66 - iter 100/105 - loss 0.07989898 - time (sec): 1.44 - samples/sec: 4126.29 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:55,385 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:55,385 EPOCH 66 done: loss 0.0814 - lr: 0.012500
2023-05-15 21:30:56,058 DEV : loss 0.4588263928890228 - accuracy (micro avg)  0.9269
2023-05-15 21:30:56,071  - 3 epochs without improvement
2023-05-15 21:30:56,071 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:56,230 epoch 67 - iter 10/105 - loss 0.06845870 - time (sec): 0.16 - samples/sec: 3905.46 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:56,386 epoch 67 - iter 20/105 - loss 0.08727215 - time (sec): 0.32 - samples/sec: 3764.82 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:56,539 epoch 67 - iter 30/105 - loss 0.07657684 - time (sec): 0.47 - samples/sec: 3771.44 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:56,679 epoch 67 - iter 40/105 - loss 0.08364560 - time (sec): 0.61 - samples/sec: 3889.19 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:56,810 epoch 67 - iter 50/105 - loss 0.07990151 - time (sec): 0.74 - samples/sec: 4035.15 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:56,939 epoch 67 - iter 60/105 - loss 0.07751244 - time (sec): 0.87 - samples/sec: 4144.07 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:57,061 epoch 67 - iter 70/105 - loss 0.07772931 - time (sec): 0.99 - samples/sec: 4169.81 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:57,188 epoch 67 - iter 80/105 - loss 0.07758064 - time (sec): 1.12 - samples/sec: 4225.12 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:57,317 epoch 67 - iter 90/105 - loss 0.07968912 - time (sec): 1.25 - samples/sec: 4258.92 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:57,456 epoch 67 - iter 100/105 - loss 0.08729335 - time (sec): 1.38 - samples/sec: 4313.57 - lr: 0.012500 - momentum: 0.000000
2023-05-15 21:30:57,519 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:57,519 EPOCH 67 done: loss 0.0866 - lr: 0.012500
2023-05-15 21:30:58,192 DEV : loss 0.45442140102386475 - accuracy (micro avg)  0.9276
2023-05-15 21:30:58,204  - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.00625]
2023-05-15 21:30:58,204 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:58,360 epoch 68 - iter 10/105 - loss 0.10963916 - time (sec): 0.16 - samples/sec: 3625.19 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:30:58,512 epoch 68 - iter 20/105 - loss 0.07913487 - time (sec): 0.31 - samples/sec: 3774.24 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:30:58,671 epoch 68 - iter 30/105 - loss 0.07409651 - time (sec): 0.47 - samples/sec: 3819.83 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:30:58,818 epoch 68 - iter 40/105 - loss 0.07495369 - time (sec): 0.61 - samples/sec: 3801.11 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:30:58,964 epoch 68 - iter 50/105 - loss 0.07448298 - time (sec): 0.76 - samples/sec: 3813.46 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:30:59,116 epoch 68 - iter 60/105 - loss 0.07435783 - time (sec): 0.91 - samples/sec: 3849.08 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:30:59,248 epoch 68 - iter 70/105 - loss 0.07258293 - time (sec): 1.04 - samples/sec: 3964.16 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:30:59,374 epoch 68 - iter 80/105 - loss 0.07064422 - time (sec): 1.17 - samples/sec: 4006.50 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:30:59,507 epoch 68 - iter 90/105 - loss 0.06948889 - time (sec): 1.30 - samples/sec: 4037.94 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:30:59,644 epoch 68 - iter 100/105 - loss 0.06781102 - time (sec): 1.44 - samples/sec: 4113.60 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:30:59,713 ----------------------------------------------------------------------------------------------------
2023-05-15 21:30:59,713 EPOCH 68 done: loss 0.0686 - lr: 0.006250
2023-05-15 21:31:00,522 DEV : loss 0.4559873044490814 - accuracy (micro avg)  0.9287
2023-05-15 21:31:00,535  - 1 epochs without improvement
2023-05-15 21:31:00,535 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:00,692 epoch 69 - iter 10/105 - loss 0.08944258 - time (sec): 0.16 - samples/sec: 4206.96 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:00,846 epoch 69 - iter 20/105 - loss 0.10336843 - time (sec): 0.31 - samples/sec: 3939.59 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:00,983 epoch 69 - iter 30/105 - loss 0.09478803 - time (sec): 0.45 - samples/sec: 4098.96 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:01,111 epoch 69 - iter 40/105 - loss 0.09967452 - time (sec): 0.58 - samples/sec: 4125.35 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:01,240 epoch 69 - iter 50/105 - loss 0.09868047 - time (sec): 0.71 - samples/sec: 4244.02 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:01,372 epoch 69 - iter 60/105 - loss 0.09570703 - time (sec): 0.84 - samples/sec: 4329.31 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:01,501 epoch 69 - iter 70/105 - loss 0.08997756 - time (sec): 0.97 - samples/sec: 4394.20 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:01,630 epoch 69 - iter 80/105 - loss 0.08595509 - time (sec): 1.09 - samples/sec: 4411.81 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:01,750 epoch 69 - iter 90/105 - loss 0.08389853 - time (sec): 1.21 - samples/sec: 4403.53 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:01,879 epoch 69 - iter 100/105 - loss 0.08742698 - time (sec): 1.34 - samples/sec: 4413.41 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:01,943 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:01,943 EPOCH 69 done: loss 0.0885 - lr: 0.006250
2023-05-15 21:31:02,617 DEV : loss 0.45404523611068726 - accuracy (micro avg)  0.9284
2023-05-15 21:31:02,630  - 2 epochs without improvement
2023-05-15 21:31:02,630 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:02,786 epoch 70 - iter 10/105 - loss 0.05790097 - time (sec): 0.16 - samples/sec: 3862.98 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:02,951 epoch 70 - iter 20/105 - loss 0.05650145 - time (sec): 0.32 - samples/sec: 3842.87 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:03,114 epoch 70 - iter 30/105 - loss 0.06989721 - time (sec): 0.48 - samples/sec: 3892.36 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:03,266 epoch 70 - iter 40/105 - loss 0.07572799 - time (sec): 0.64 - samples/sec: 3841.64 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:03,411 epoch 70 - iter 50/105 - loss 0.07726074 - time (sec): 0.78 - samples/sec: 3841.64 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:03,540 epoch 70 - iter 60/105 - loss 0.07660886 - time (sec): 0.91 - samples/sec: 3979.72 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:03,666 epoch 70 - iter 70/105 - loss 0.07545937 - time (sec): 1.04 - samples/sec: 4038.69 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:03,792 epoch 70 - iter 80/105 - loss 0.08047299 - time (sec): 1.16 - samples/sec: 4091.16 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:03,921 epoch 70 - iter 90/105 - loss 0.08212963 - time (sec): 1.29 - samples/sec: 4152.37 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:04,047 epoch 70 - iter 100/105 - loss 0.08173741 - time (sec): 1.42 - samples/sec: 4160.89 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:04,118 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:04,118 EPOCH 70 done: loss 0.0821 - lr: 0.006250
2023-05-15 21:31:04,789 DEV : loss 0.4548334777355194 - accuracy (micro avg)  0.9288
2023-05-15 21:31:04,802  - 0 epochs without improvement
2023-05-15 21:31:04,802 saving best model
2023-05-15 21:31:06,278 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:06,446 epoch 71 - iter 10/105 - loss 0.05925519 - time (sec): 0.17 - samples/sec: 3561.96 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:06,627 epoch 71 - iter 20/105 - loss 0.08341835 - time (sec): 0.35 - samples/sec: 3688.93 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:06,786 epoch 71 - iter 30/105 - loss 0.08201720 - time (sec): 0.51 - samples/sec: 3799.69 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:06,940 epoch 71 - iter 40/105 - loss 0.08307218 - time (sec): 0.66 - samples/sec: 3764.18 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:07,107 epoch 71 - iter 50/105 - loss 0.07868981 - time (sec): 0.83 - samples/sec: 3729.79 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:07,253 epoch 71 - iter 60/105 - loss 0.07536770 - time (sec): 0.97 - samples/sec: 3724.63 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:07,415 epoch 71 - iter 70/105 - loss 0.07608214 - time (sec): 1.14 - samples/sec: 3728.62 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:07,563 epoch 71 - iter 80/105 - loss 0.07578846 - time (sec): 1.28 - samples/sec: 3705.30 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:07,717 epoch 71 - iter 90/105 - loss 0.07440881 - time (sec): 1.44 - samples/sec: 3724.39 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:07,841 epoch 71 - iter 100/105 - loss 0.07231427 - time (sec): 1.56 - samples/sec: 3793.05 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:07,908 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:07,908 EPOCH 71 done: loss 0.0727 - lr: 0.006250
2023-05-15 21:31:08,710 DEV : loss 0.4581780433654785 - accuracy (micro avg)  0.9285
2023-05-15 21:31:08,722  - 1 epochs without improvement
2023-05-15 21:31:08,722 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:08,883 epoch 72 - iter 10/105 - loss 0.05354000 - time (sec): 0.16 - samples/sec: 3907.77 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:09,033 epoch 72 - iter 20/105 - loss 0.06611641 - time (sec): 0.31 - samples/sec: 3858.84 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:09,189 epoch 72 - iter 30/105 - loss 0.09281519 - time (sec): 0.47 - samples/sec: 3720.04 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:09,316 epoch 72 - iter 40/105 - loss 0.09454611 - time (sec): 0.59 - samples/sec: 3910.86 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:09,445 epoch 72 - iter 50/105 - loss 0.09008855 - time (sec): 0.72 - samples/sec: 4117.39 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:09,577 epoch 72 - iter 60/105 - loss 0.09084776 - time (sec): 0.86 - samples/sec: 4184.40 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:09,707 epoch 72 - iter 70/105 - loss 0.08655022 - time (sec): 0.98 - samples/sec: 4259.24 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:09,833 epoch 72 - iter 80/105 - loss 0.08556694 - time (sec): 1.11 - samples/sec: 4252.43 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:09,963 epoch 72 - iter 90/105 - loss 0.08736164 - time (sec): 1.24 - samples/sec: 4288.88 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:10,088 epoch 72 - iter 100/105 - loss 0.08868731 - time (sec): 1.37 - samples/sec: 4315.20 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:10,159 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:10,159 EPOCH 72 done: loss 0.0863 - lr: 0.006250
2023-05-15 21:31:10,829 DEV : loss 0.45512455701828003 - accuracy (micro avg)  0.9277
2023-05-15 21:31:10,842  - 2 epochs without improvement
2023-05-15 21:31:10,842 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:11,014 epoch 73 - iter 10/105 - loss 0.05618360 - time (sec): 0.17 - samples/sec: 4063.87 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:11,176 epoch 73 - iter 20/105 - loss 0.06240535 - time (sec): 0.33 - samples/sec: 4017.13 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:11,317 epoch 73 - iter 30/105 - loss 0.05767794 - time (sec): 0.47 - samples/sec: 4047.38 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:11,442 epoch 73 - iter 40/105 - loss 0.06854809 - time (sec): 0.60 - samples/sec: 4149.84 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:11,565 epoch 73 - iter 50/105 - loss 0.06718055 - time (sec): 0.72 - samples/sec: 4220.82 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:11,693 epoch 73 - iter 60/105 - loss 0.06832022 - time (sec): 0.85 - samples/sec: 4251.94 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:11,825 epoch 73 - iter 70/105 - loss 0.07204937 - time (sec): 0.98 - samples/sec: 4323.67 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:11,948 epoch 73 - iter 80/105 - loss 0.07038789 - time (sec): 1.11 - samples/sec: 4367.21 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:12,068 epoch 73 - iter 90/105 - loss 0.07173083 - time (sec): 1.23 - samples/sec: 4385.62 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:12,197 epoch 73 - iter 100/105 - loss 0.07347684 - time (sec): 1.36 - samples/sec: 4375.11 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:12,264 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:12,264 EPOCH 73 done: loss 0.0732 - lr: 0.006250
2023-05-15 21:31:12,939 DEV : loss 0.45252254605293274 - accuracy (micro avg)  0.9277
2023-05-15 21:31:12,951  - 3 epochs without improvement
2023-05-15 21:31:12,951 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:13,116 epoch 74 - iter 10/105 - loss 0.02994434 - time (sec): 0.16 - samples/sec: 3313.18 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:13,280 epoch 74 - iter 20/105 - loss 0.04619729 - time (sec): 0.33 - samples/sec: 3407.00 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:13,433 epoch 74 - iter 30/105 - loss 0.05692570 - time (sec): 0.48 - samples/sec: 3506.18 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:13,587 epoch 74 - iter 40/105 - loss 0.06489997 - time (sec): 0.64 - samples/sec: 3678.64 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:13,741 epoch 74 - iter 50/105 - loss 0.06906347 - time (sec): 0.79 - samples/sec: 3707.45 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:13,873 epoch 74 - iter 60/105 - loss 0.07814785 - time (sec): 0.92 - samples/sec: 3834.11 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:14,001 epoch 74 - iter 70/105 - loss 0.07762192 - time (sec): 1.05 - samples/sec: 3913.42 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:14,137 epoch 74 - iter 80/105 - loss 0.07806681 - time (sec): 1.19 - samples/sec: 4023.56 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:14,270 epoch 74 - iter 90/105 - loss 0.07972765 - time (sec): 1.32 - samples/sec: 4095.73 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:14,393 epoch 74 - iter 100/105 - loss 0.08040769 - time (sec): 1.44 - samples/sec: 4103.49 - lr: 0.006250 - momentum: 0.000000
2023-05-15 21:31:14,464 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:14,464 EPOCH 74 done: loss 0.0806 - lr: 0.006250
2023-05-15 21:31:15,266 DEV : loss 0.452541708946228 - accuracy (micro avg)  0.9277
2023-05-15 21:31:15,278  - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.003125]
2023-05-15 21:31:15,278 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:15,438 epoch 75 - iter 10/105 - loss 0.05128156 - time (sec): 0.16 - samples/sec: 3811.40 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:15,588 epoch 75 - iter 20/105 - loss 0.05844909 - time (sec): 0.31 - samples/sec: 3738.54 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:15,719 epoch 75 - iter 30/105 - loss 0.06017984 - time (sec): 0.44 - samples/sec: 4060.59 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:15,842 epoch 75 - iter 40/105 - loss 0.05969354 - time (sec): 0.56 - samples/sec: 4217.26 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:15,971 epoch 75 - iter 50/105 - loss 0.07116576 - time (sec): 0.69 - samples/sec: 4355.69 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:16,100 epoch 75 - iter 60/105 - loss 0.07862299 - time (sec): 0.82 - samples/sec: 4368.47 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:16,222 epoch 75 - iter 70/105 - loss 0.07367731 - time (sec): 0.94 - samples/sec: 4354.25 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:16,352 epoch 75 - iter 80/105 - loss 0.07187146 - time (sec): 1.07 - samples/sec: 4375.41 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:16,485 epoch 75 - iter 90/105 - loss 0.06910262 - time (sec): 1.21 - samples/sec: 4380.93 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:16,617 epoch 75 - iter 100/105 - loss 0.06635376 - time (sec): 1.34 - samples/sec: 4421.90 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:16,687 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:16,687 EPOCH 75 done: loss 0.0684 - lr: 0.003125
2023-05-15 21:31:17,359 DEV : loss 0.45416298508644104 - accuracy (micro avg)  0.9281
2023-05-15 21:31:17,372  - 1 epochs without improvement
2023-05-15 21:31:17,372 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:17,523 epoch 76 - iter 10/105 - loss 0.05918599 - time (sec): 0.15 - samples/sec: 3442.17 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:17,671 epoch 76 - iter 20/105 - loss 0.07186231 - time (sec): 0.30 - samples/sec: 3511.07 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:17,834 epoch 76 - iter 30/105 - loss 0.07661525 - time (sec): 0.46 - samples/sec: 3563.78 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:17,995 epoch 76 - iter 40/105 - loss 0.09041049 - time (sec): 0.62 - samples/sec: 3605.29 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:18,152 epoch 76 - iter 50/105 - loss 0.08889893 - time (sec): 0.78 - samples/sec: 3700.76 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:18,281 epoch 76 - iter 60/105 - loss 0.08529008 - time (sec): 0.91 - samples/sec: 3901.02 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:18,408 epoch 76 - iter 70/105 - loss 0.08495219 - time (sec): 1.04 - samples/sec: 3976.59 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:18,540 epoch 76 - iter 80/105 - loss 0.08500861 - time (sec): 1.17 - samples/sec: 4053.75 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:18,675 epoch 76 - iter 90/105 - loss 0.08691115 - time (sec): 1.30 - samples/sec: 4117.47 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:18,805 epoch 76 - iter 100/105 - loss 0.08528640 - time (sec): 1.43 - samples/sec: 4157.67 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:18,870 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:18,870 EPOCH 76 done: loss 0.0831 - lr: 0.003125
2023-05-15 21:31:19,545 DEV : loss 0.4525325298309326 - accuracy (micro avg)  0.9284
2023-05-15 21:31:19,558  - 2 epochs without improvement
2023-05-15 21:31:19,558 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:19,708 epoch 77 - iter 10/105 - loss 0.05640535 - time (sec): 0.15 - samples/sec: 3978.59 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:19,860 epoch 77 - iter 20/105 - loss 0.07251769 - time (sec): 0.30 - samples/sec: 3821.23 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:20,007 epoch 77 - iter 30/105 - loss 0.05696852 - time (sec): 0.45 - samples/sec: 3803.28 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:20,167 epoch 77 - iter 40/105 - loss 0.06423022 - time (sec): 0.61 - samples/sec: 3810.51 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:20,329 epoch 77 - iter 50/105 - loss 0.06844753 - time (sec): 0.77 - samples/sec: 3821.47 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:20,487 epoch 77 - iter 60/105 - loss 0.07693215 - time (sec): 0.93 - samples/sec: 3874.91 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:20,652 epoch 77 - iter 70/105 - loss 0.07380444 - time (sec): 1.09 - samples/sec: 3829.16 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:20,804 epoch 77 - iter 80/105 - loss 0.07705450 - time (sec): 1.25 - samples/sec: 3827.57 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:20,970 epoch 77 - iter 90/105 - loss 0.07583402 - time (sec): 1.41 - samples/sec: 3800.11 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:21,125 epoch 77 - iter 100/105 - loss 0.07763649 - time (sec): 1.57 - samples/sec: 3779.50 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:21,203 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:21,203 EPOCH 77 done: loss 0.0758 - lr: 0.003125
2023-05-15 21:31:21,874 DEV : loss 0.4528382122516632 - accuracy (micro avg)  0.9281
2023-05-15 21:31:21,887  - 3 epochs without improvement
2023-05-15 21:31:21,887 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:22,038 epoch 78 - iter 10/105 - loss 0.04706085 - time (sec): 0.15 - samples/sec: 3537.22 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:22,197 epoch 78 - iter 20/105 - loss 0.06569906 - time (sec): 0.31 - samples/sec: 3743.21 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:22,343 epoch 78 - iter 30/105 - loss 0.07837444 - time (sec): 0.46 - samples/sec: 3690.38 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:22,496 epoch 78 - iter 40/105 - loss 0.07520407 - time (sec): 0.61 - samples/sec: 3718.03 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:22,654 epoch 78 - iter 50/105 - loss 0.07961023 - time (sec): 0.77 - samples/sec: 3764.60 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:22,780 epoch 78 - iter 60/105 - loss 0.08524695 - time (sec): 0.89 - samples/sec: 3911.94 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:22,912 epoch 78 - iter 70/105 - loss 0.08718972 - time (sec): 1.03 - samples/sec: 4034.00 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:23,037 epoch 78 - iter 80/105 - loss 0.08715969 - time (sec): 1.15 - samples/sec: 4124.13 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:23,158 epoch 78 - iter 90/105 - loss 0.08897209 - time (sec): 1.27 - samples/sec: 4149.10 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:23,297 epoch 78 - iter 100/105 - loss 0.09199450 - time (sec): 1.41 - samples/sec: 4206.78 - lr: 0.003125 - momentum: 0.000000
2023-05-15 21:31:23,363 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:23,363 EPOCH 78 done: loss 0.0927 - lr: 0.003125
2023-05-15 21:31:24,176 DEV : loss 0.45365533232688904 - accuracy (micro avg)  0.9284
2023-05-15 21:31:24,188  - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.0015625]
2023-05-15 21:31:24,189 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:24,350 epoch 79 - iter 10/105 - loss 0.09398302 - time (sec): 0.16 - samples/sec: 3712.77 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:24,504 epoch 79 - iter 20/105 - loss 0.07434979 - time (sec): 0.32 - samples/sec: 3928.85 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:24,666 epoch 79 - iter 30/105 - loss 0.08088376 - time (sec): 0.48 - samples/sec: 3863.00 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:24,821 epoch 79 - iter 40/105 - loss 0.08310857 - time (sec): 0.63 - samples/sec: 3812.20 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:24,979 epoch 79 - iter 50/105 - loss 0.07883039 - time (sec): 0.79 - samples/sec: 3788.24 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:25,132 epoch 79 - iter 60/105 - loss 0.08249951 - time (sec): 0.94 - samples/sec: 3807.23 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:25,293 epoch 79 - iter 70/105 - loss 0.08213901 - time (sec): 1.10 - samples/sec: 3808.40 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:25,450 epoch 79 - iter 80/105 - loss 0.07941353 - time (sec): 1.26 - samples/sec: 3763.70 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:25,609 epoch 79 - iter 90/105 - loss 0.07842659 - time (sec): 1.42 - samples/sec: 3803.21 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:25,758 epoch 79 - iter 100/105 - loss 0.08078698 - time (sec): 1.57 - samples/sec: 3769.21 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:25,838 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:25,838 EPOCH 79 done: loss 0.0814 - lr: 0.001563
2023-05-15 21:31:26,512 DEV : loss 0.45469412207603455 - accuracy (micro avg)  0.9287
2023-05-15 21:31:26,525  - 1 epochs without improvement
2023-05-15 21:31:26,525 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:26,674 epoch 80 - iter 10/105 - loss 0.08687815 - time (sec): 0.15 - samples/sec: 3496.86 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:26,832 epoch 80 - iter 20/105 - loss 0.08161370 - time (sec): 0.31 - samples/sec: 3707.59 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:26,963 epoch 80 - iter 30/105 - loss 0.08213428 - time (sec): 0.44 - samples/sec: 4044.88 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:27,091 epoch 80 - iter 40/105 - loss 0.07656094 - time (sec): 0.57 - samples/sec: 4128.56 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:27,225 epoch 80 - iter 50/105 - loss 0.07999229 - time (sec): 0.70 - samples/sec: 4259.62 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:27,356 epoch 80 - iter 60/105 - loss 0.08157347 - time (sec): 0.83 - samples/sec: 4344.42 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:27,482 epoch 80 - iter 70/105 - loss 0.08251190 - time (sec): 0.96 - samples/sec: 4392.56 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:27,608 epoch 80 - iter 80/105 - loss 0.08859252 - time (sec): 1.08 - samples/sec: 4404.76 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:27,732 epoch 80 - iter 90/105 - loss 0.08405423 - time (sec): 1.21 - samples/sec: 4405.96 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:27,865 epoch 80 - iter 100/105 - loss 0.08321391 - time (sec): 1.34 - samples/sec: 4431.27 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:27,928 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:27,928 EPOCH 80 done: loss 0.0847 - lr: 0.001563
2023-05-15 21:31:28,600 DEV : loss 0.45543888211250305 - accuracy (micro avg)  0.9281
2023-05-15 21:31:28,612  - 2 epochs without improvement
2023-05-15 21:31:28,612 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:28,780 epoch 81 - iter 10/105 - loss 0.09104405 - time (sec): 0.17 - samples/sec: 3878.73 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:28,939 epoch 81 - iter 20/105 - loss 0.09779127 - time (sec): 0.33 - samples/sec: 3779.11 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:29,068 epoch 81 - iter 30/105 - loss 0.08391870 - time (sec): 0.46 - samples/sec: 3956.76 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:29,198 epoch 81 - iter 40/105 - loss 0.08020966 - time (sec): 0.59 - samples/sec: 4117.64 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:29,324 epoch 81 - iter 50/105 - loss 0.07895226 - time (sec): 0.71 - samples/sec: 4247.92 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:29,454 epoch 81 - iter 60/105 - loss 0.07539052 - time (sec): 0.84 - samples/sec: 4255.05 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:29,574 epoch 81 - iter 70/105 - loss 0.07256490 - time (sec): 0.96 - samples/sec: 4249.92 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:29,707 epoch 81 - iter 80/105 - loss 0.07126569 - time (sec): 1.10 - samples/sec: 4375.21 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:29,832 epoch 81 - iter 90/105 - loss 0.07536926 - time (sec): 1.22 - samples/sec: 4392.35 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:29,958 epoch 81 - iter 100/105 - loss 0.07462281 - time (sec): 1.35 - samples/sec: 4402.65 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:30,028 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:30,028 EPOCH 81 done: loss 0.0738 - lr: 0.001563
2023-05-15 21:31:30,834 DEV : loss 0.45619630813598633 - accuracy (micro avg)  0.9281
2023-05-15 21:31:30,846  - 3 epochs without improvement
2023-05-15 21:31:30,846 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:31,008 epoch 82 - iter 10/105 - loss 0.12525001 - time (sec): 0.16 - samples/sec: 3724.13 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:31,171 epoch 82 - iter 20/105 - loss 0.11689806 - time (sec): 0.32 - samples/sec: 3620.25 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:31,299 epoch 82 - iter 30/105 - loss 0.10251425 - time (sec): 0.45 - samples/sec: 3802.14 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:31,419 epoch 82 - iter 40/105 - loss 0.09642245 - time (sec): 0.57 - samples/sec: 3950.44 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:31,549 epoch 82 - iter 50/105 - loss 0.09190527 - time (sec): 0.70 - samples/sec: 4075.66 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:31,674 epoch 82 - iter 60/105 - loss 0.09405102 - time (sec): 0.83 - samples/sec: 4142.18 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:31,804 epoch 82 - iter 70/105 - loss 0.08565949 - time (sec): 0.96 - samples/sec: 4217.21 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:31,929 epoch 82 - iter 80/105 - loss 0.08256859 - time (sec): 1.08 - samples/sec: 4213.75 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:32,059 epoch 82 - iter 90/105 - loss 0.08123900 - time (sec): 1.21 - samples/sec: 4286.50 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:32,194 epoch 82 - iter 100/105 - loss 0.07714071 - time (sec): 1.35 - samples/sec: 4364.26 - lr: 0.001563 - momentum: 0.000000
2023-05-15 21:31:32,267 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:32,267 EPOCH 82 done: loss 0.0819 - lr: 0.001563
2023-05-15 21:31:32,940 DEV : loss 0.45649954676628113 - accuracy (micro avg)  0.9282
2023-05-15 21:31:32,953  - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.00078125]
2023-05-15 21:31:32,953 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:33,111 epoch 83 - iter 10/105 - loss 0.06625568 - time (sec): 0.16 - samples/sec: 3815.44 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:33,267 epoch 83 - iter 20/105 - loss 0.06653766 - time (sec): 0.31 - samples/sec: 3872.72 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:33,428 epoch 83 - iter 30/105 - loss 0.07237229 - time (sec): 0.47 - samples/sec: 3838.24 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:33,580 epoch 83 - iter 40/105 - loss 0.06671547 - time (sec): 0.63 - samples/sec: 3708.51 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:33,735 epoch 83 - iter 50/105 - loss 0.06586352 - time (sec): 0.78 - samples/sec: 3696.60 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:33,890 epoch 83 - iter 60/105 - loss 0.06541506 - time (sec): 0.94 - samples/sec: 3706.22 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:34,059 epoch 83 - iter 70/105 - loss 0.06899117 - time (sec): 1.11 - samples/sec: 3742.73 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:34,217 epoch 83 - iter 80/105 - loss 0.06740104 - time (sec): 1.26 - samples/sec: 3707.03 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:34,373 epoch 83 - iter 90/105 - loss 0.06348514 - time (sec): 1.42 - samples/sec: 3712.48 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:34,514 epoch 83 - iter 100/105 - loss 0.06313693 - time (sec): 1.56 - samples/sec: 3794.15 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:34,582 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:34,582 EPOCH 83 done: loss 0.0646 - lr: 0.000781
2023-05-15 21:31:35,256 DEV : loss 0.4569226801395416 - accuracy (micro avg)  0.9282
2023-05-15 21:31:35,268  - 1 epochs without improvement
2023-05-15 21:31:35,268 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:35,425 epoch 84 - iter 10/105 - loss 0.05634396 - time (sec): 0.16 - samples/sec: 3795.45 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:35,589 epoch 84 - iter 20/105 - loss 0.05880624 - time (sec): 0.32 - samples/sec: 3615.23 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:35,746 epoch 84 - iter 30/105 - loss 0.05553765 - time (sec): 0.48 - samples/sec: 3651.73 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:35,898 epoch 84 - iter 40/105 - loss 0.05421690 - time (sec): 0.63 - samples/sec: 3608.96 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:36,051 epoch 84 - iter 50/105 - loss 0.06769443 - time (sec): 0.78 - samples/sec: 3651.20 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:36,183 epoch 84 - iter 60/105 - loss 0.06904524 - time (sec): 0.91 - samples/sec: 3815.75 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:36,307 epoch 84 - iter 70/105 - loss 0.06988047 - time (sec): 1.04 - samples/sec: 3923.91 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:36,438 epoch 84 - iter 80/105 - loss 0.06880722 - time (sec): 1.17 - samples/sec: 4015.36 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:36,567 epoch 84 - iter 90/105 - loss 0.06763182 - time (sec): 1.30 - samples/sec: 4079.92 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:36,694 epoch 84 - iter 100/105 - loss 0.06676447 - time (sec): 1.43 - samples/sec: 4148.14 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:36,762 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:36,762 EPOCH 84 done: loss 0.0678 - lr: 0.000781
2023-05-15 21:31:37,575 DEV : loss 0.4565540850162506 - accuracy (micro avg)  0.9281
2023-05-15 21:31:37,587  - 2 epochs without improvement
2023-05-15 21:31:37,587 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:37,757 epoch 85 - iter 10/105 - loss 0.06256486 - time (sec): 0.17 - samples/sec: 3677.85 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:37,914 epoch 85 - iter 20/105 - loss 0.07293128 - time (sec): 0.33 - samples/sec: 3592.56 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:38,066 epoch 85 - iter 30/105 - loss 0.06617007 - time (sec): 0.48 - samples/sec: 3619.65 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:38,222 epoch 85 - iter 40/105 - loss 0.07255578 - time (sec): 0.63 - samples/sec: 3677.53 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:38,384 epoch 85 - iter 50/105 - loss 0.06989969 - time (sec): 0.80 - samples/sec: 3776.48 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:38,530 epoch 85 - iter 60/105 - loss 0.06554395 - time (sec): 0.94 - samples/sec: 3740.88 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:38,688 epoch 85 - iter 70/105 - loss 0.06226723 - time (sec): 1.10 - samples/sec: 3780.25 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:38,847 epoch 85 - iter 80/105 - loss 0.06101403 - time (sec): 1.26 - samples/sec: 3820.26 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:39,005 epoch 85 - iter 90/105 - loss 0.06516340 - time (sec): 1.42 - samples/sec: 3797.73 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:39,159 epoch 85 - iter 100/105 - loss 0.06652169 - time (sec): 1.57 - samples/sec: 3761.44 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:39,231 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:39,231 EPOCH 85 done: loss 0.0670 - lr: 0.000781
2023-05-15 21:31:39,903 DEV : loss 0.45625191926956177 - accuracy (micro avg)  0.9284
2023-05-15 21:31:39,916  - 3 epochs without improvement
2023-05-15 21:31:39,916 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:40,078 epoch 86 - iter 10/105 - loss 0.04161077 - time (sec): 0.16 - samples/sec: 3363.93 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:40,251 epoch 86 - iter 20/105 - loss 0.05284345 - time (sec): 0.33 - samples/sec: 3447.78 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:40,405 epoch 86 - iter 30/105 - loss 0.05720211 - time (sec): 0.49 - samples/sec: 3544.07 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:40,556 epoch 86 - iter 40/105 - loss 0.05855859 - time (sec): 0.64 - samples/sec: 3620.52 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:40,723 epoch 86 - iter 50/105 - loss 0.06731156 - time (sec): 0.81 - samples/sec: 3633.73 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:40,892 epoch 86 - iter 60/105 - loss 0.06409584 - time (sec): 0.98 - samples/sec: 3624.43 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:41,050 epoch 86 - iter 70/105 - loss 0.06448159 - time (sec): 1.13 - samples/sec: 3610.54 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:41,201 epoch 86 - iter 80/105 - loss 0.06684483 - time (sec): 1.28 - samples/sec: 3617.48 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:41,373 epoch 86 - iter 90/105 - loss 0.07065451 - time (sec): 1.46 - samples/sec: 3609.49 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:41,539 epoch 86 - iter 100/105 - loss 0.07105019 - time (sec): 1.62 - samples/sec: 3651.39 - lr: 0.000781 - momentum: 0.000000
2023-05-15 21:31:41,623 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:41,623 EPOCH 86 done: loss 0.0707 - lr: 0.000781
2023-05-15 21:31:42,293 DEV : loss 0.4558914303779602 - accuracy (micro avg)  0.9285
2023-05-15 21:31:42,305  - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.000390625]
2023-05-15 21:31:42,305 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:42,466 epoch 87 - iter 10/105 - loss 0.04982021 - time (sec): 0.16 - samples/sec: 3886.65 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:42,623 epoch 87 - iter 20/105 - loss 0.08063016 - time (sec): 0.32 - samples/sec: 3594.55 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:42,767 epoch 87 - iter 30/105 - loss 0.07532039 - time (sec): 0.46 - samples/sec: 3603.82 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:42,937 epoch 87 - iter 40/105 - loss 0.07826631 - time (sec): 0.63 - samples/sec: 3606.43 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:43,105 epoch 87 - iter 50/105 - loss 0.07813172 - time (sec): 0.80 - samples/sec: 3646.58 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:43,268 epoch 87 - iter 60/105 - loss 0.08340842 - time (sec): 0.96 - samples/sec: 3654.19 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:43,423 epoch 87 - iter 70/105 - loss 0.07727099 - time (sec): 1.12 - samples/sec: 3714.27 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:43,575 epoch 87 - iter 80/105 - loss 0.07791657 - time (sec): 1.27 - samples/sec: 3727.90 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:43,735 epoch 87 - iter 90/105 - loss 0.07602732 - time (sec): 1.43 - samples/sec: 3703.95 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:43,871 epoch 87 - iter 100/105 - loss 0.07647325 - time (sec): 1.57 - samples/sec: 3788.99 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:43,937 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:43,937 EPOCH 87 done: loss 0.0766 - lr: 0.000391
2023-05-15 21:31:44,741 DEV : loss 0.45574912428855896 - accuracy (micro avg)  0.9282
2023-05-15 21:31:44,753  - 1 epochs without improvement
2023-05-15 21:31:44,754 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:44,913 epoch 88 - iter 10/105 - loss 0.07622109 - time (sec): 0.16 - samples/sec: 3928.45 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:45,073 epoch 88 - iter 20/105 - loss 0.08673939 - time (sec): 0.32 - samples/sec: 3721.81 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:45,241 epoch 88 - iter 30/105 - loss 0.09478922 - time (sec): 0.49 - samples/sec: 3719.78 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:45,385 epoch 88 - iter 40/105 - loss 0.09433885 - time (sec): 0.63 - samples/sec: 3828.89 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:45,515 epoch 88 - iter 50/105 - loss 0.09348278 - time (sec): 0.76 - samples/sec: 3975.06 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:45,641 epoch 88 - iter 60/105 - loss 0.08843286 - time (sec): 0.89 - samples/sec: 4030.94 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:45,767 epoch 88 - iter 70/105 - loss 0.08531614 - time (sec): 1.01 - samples/sec: 4080.20 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:45,901 epoch 88 - iter 80/105 - loss 0.08199163 - time (sec): 1.15 - samples/sec: 4150.58 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:46,028 epoch 88 - iter 90/105 - loss 0.08255142 - time (sec): 1.27 - samples/sec: 4176.91 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:46,154 epoch 88 - iter 100/105 - loss 0.07994260 - time (sec): 1.40 - samples/sec: 4233.18 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:46,223 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:46,223 EPOCH 88 done: loss 0.0802 - lr: 0.000391
2023-05-15 21:31:46,894 DEV : loss 0.4561077356338501 - accuracy (micro avg)  0.9282
2023-05-15 21:31:46,906  - 2 epochs without improvement
2023-05-15 21:31:46,906 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:47,070 epoch 89 - iter 10/105 - loss 0.07080775 - time (sec): 0.16 - samples/sec: 3693.68 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:47,223 epoch 89 - iter 20/105 - loss 0.07455936 - time (sec): 0.32 - samples/sec: 3613.52 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:47,394 epoch 89 - iter 30/105 - loss 0.07381745 - time (sec): 0.49 - samples/sec: 3669.90 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:47,523 epoch 89 - iter 40/105 - loss 0.08314483 - time (sec): 0.62 - samples/sec: 3816.89 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:47,649 epoch 89 - iter 50/105 - loss 0.07774133 - time (sec): 0.74 - samples/sec: 4036.84 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:47,777 epoch 89 - iter 60/105 - loss 0.07910999 - time (sec): 0.87 - samples/sec: 4118.80 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:47,901 epoch 89 - iter 70/105 - loss 0.07932378 - time (sec): 0.99 - samples/sec: 4202.82 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:48,033 epoch 89 - iter 80/105 - loss 0.07679682 - time (sec): 1.13 - samples/sec: 4251.01 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:48,164 epoch 89 - iter 90/105 - loss 0.07742812 - time (sec): 1.26 - samples/sec: 4295.76 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:48,289 epoch 89 - iter 100/105 - loss 0.07785464 - time (sec): 1.38 - samples/sec: 4305.90 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:48,357 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:48,357 EPOCH 89 done: loss 0.0786 - lr: 0.000391
2023-05-15 21:31:49,028 DEV : loss 0.45609503984451294 - accuracy (micro avg)  0.9282
2023-05-15 21:31:49,040  - 3 epochs without improvement
2023-05-15 21:31:49,040 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:49,204 epoch 90 - iter 10/105 - loss 0.05868137 - time (sec): 0.16 - samples/sec: 3826.04 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:49,349 epoch 90 - iter 20/105 - loss 0.09696209 - time (sec): 0.31 - samples/sec: 3764.51 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:49,507 epoch 90 - iter 30/105 - loss 0.09615798 - time (sec): 0.47 - samples/sec: 3705.81 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:49,667 epoch 90 - iter 40/105 - loss 0.08374592 - time (sec): 0.63 - samples/sec: 3715.04 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:49,823 epoch 90 - iter 50/105 - loss 0.07703084 - time (sec): 0.78 - samples/sec: 3662.11 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:49,978 epoch 90 - iter 60/105 - loss 0.08614811 - time (sec): 0.94 - samples/sec: 3732.03 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:50,131 epoch 90 - iter 70/105 - loss 0.09328989 - time (sec): 1.09 - samples/sec: 3688.87 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:50,280 epoch 90 - iter 80/105 - loss 0.08829302 - time (sec): 1.24 - samples/sec: 3726.86 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:50,418 epoch 90 - iter 90/105 - loss 0.08347571 - time (sec): 1.38 - samples/sec: 3848.06 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:50,553 epoch 90 - iter 100/105 - loss 0.08183453 - time (sec): 1.51 - samples/sec: 3907.42 - lr: 0.000391 - momentum: 0.000000
2023-05-15 21:31:50,620 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:50,620 EPOCH 90 done: loss 0.0803 - lr: 0.000391
2023-05-15 21:31:51,291 DEV : loss 0.4561174511909485 - accuracy (micro avg)  0.9282
2023-05-15 21:31:51,304  - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [0.0001953125]
2023-05-15 21:31:51,304 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:51,463 epoch 91 - iter 10/105 - loss 0.10163174 - time (sec): 0.16 - samples/sec: 3736.41 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:51,612 epoch 91 - iter 20/105 - loss 0.08917681 - time (sec): 0.31 - samples/sec: 3612.29 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:51,768 epoch 91 - iter 30/105 - loss 0.07233568 - time (sec): 0.46 - samples/sec: 3660.52 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:51,923 epoch 91 - iter 40/105 - loss 0.07080886 - time (sec): 0.62 - samples/sec: 3707.63 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:52,087 epoch 91 - iter 50/105 - loss 0.06833288 - time (sec): 0.78 - samples/sec: 3758.81 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:52,237 epoch 91 - iter 60/105 - loss 0.06462794 - time (sec): 0.93 - samples/sec: 3804.06 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:52,391 epoch 91 - iter 70/105 - loss 0.06432342 - time (sec): 1.09 - samples/sec: 3788.99 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:52,524 epoch 91 - iter 80/105 - loss 0.06133304 - time (sec): 1.22 - samples/sec: 3898.58 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:52,648 epoch 91 - iter 90/105 - loss 0.06374294 - time (sec): 1.34 - samples/sec: 3970.37 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:52,775 epoch 91 - iter 100/105 - loss 0.06553967 - time (sec): 1.47 - samples/sec: 4014.74 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:52,842 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:52,842 EPOCH 91 done: loss 0.0674 - lr: 0.000195
2023-05-15 21:31:53,652 DEV : loss 0.4560907185077667 - accuracy (micro avg)  0.9282
2023-05-15 21:31:53,664  - 1 epochs without improvement
2023-05-15 21:31:53,664 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:53,830 epoch 92 - iter 10/105 - loss 0.09787210 - time (sec): 0.17 - samples/sec: 3797.34 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:53,989 epoch 92 - iter 20/105 - loss 0.08095827 - time (sec): 0.33 - samples/sec: 3682.45 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:54,141 epoch 92 - iter 30/105 - loss 0.07818815 - time (sec): 0.48 - samples/sec: 3688.05 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:54,293 epoch 92 - iter 40/105 - loss 0.07613048 - time (sec): 0.63 - samples/sec: 3823.41 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:54,420 epoch 92 - iter 50/105 - loss 0.07859168 - time (sec): 0.76 - samples/sec: 3881.09 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:54,550 epoch 92 - iter 60/105 - loss 0.07787762 - time (sec): 0.89 - samples/sec: 3994.22 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:54,676 epoch 92 - iter 70/105 - loss 0.08210023 - time (sec): 1.01 - samples/sec: 4065.12 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:54,807 epoch 92 - iter 80/105 - loss 0.08262567 - time (sec): 1.14 - samples/sec: 4158.56 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:54,932 epoch 92 - iter 90/105 - loss 0.08175313 - time (sec): 1.27 - samples/sec: 4191.78 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:55,059 epoch 92 - iter 100/105 - loss 0.08208601 - time (sec): 1.39 - samples/sec: 4205.72 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:55,130 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:55,131 EPOCH 92 done: loss 0.0814 - lr: 0.000195
2023-05-15 21:31:55,801 DEV : loss 0.45620062947273254 - accuracy (micro avg)  0.9282
2023-05-15 21:31:55,813  - 2 epochs without improvement
2023-05-15 21:31:55,813 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:55,966 epoch 93 - iter 10/105 - loss 0.08338736 - time (sec): 0.15 - samples/sec: 3324.33 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:56,116 epoch 93 - iter 20/105 - loss 0.09952859 - time (sec): 0.30 - samples/sec: 3364.67 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:56,272 epoch 93 - iter 30/105 - loss 0.09269119 - time (sec): 0.46 - samples/sec: 3448.47 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:56,428 epoch 93 - iter 40/105 - loss 0.08263464 - time (sec): 0.61 - samples/sec: 3554.14 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:56,563 epoch 93 - iter 50/105 - loss 0.07815594 - time (sec): 0.75 - samples/sec: 3720.25 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:56,687 epoch 93 - iter 60/105 - loss 0.07279853 - time (sec): 0.87 - samples/sec: 3844.56 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:56,813 epoch 93 - iter 70/105 - loss 0.06974049 - time (sec): 1.00 - samples/sec: 3966.49 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:56,940 epoch 93 - iter 80/105 - loss 0.07093432 - time (sec): 1.13 - samples/sec: 4056.96 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:57,079 epoch 93 - iter 90/105 - loss 0.06798311 - time (sec): 1.27 - samples/sec: 4180.91 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:57,209 epoch 93 - iter 100/105 - loss 0.06784165 - time (sec): 1.40 - samples/sec: 4266.46 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:57,274 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:57,274 EPOCH 93 done: loss 0.0690 - lr: 0.000195
2023-05-15 21:31:57,945 DEV : loss 0.45623788237571716 - accuracy (micro avg)  0.9281
2023-05-15 21:31:57,957  - 3 epochs without improvement
2023-05-15 21:31:57,957 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:58,125 epoch 94 - iter 10/105 - loss 0.08754979 - time (sec): 0.17 - samples/sec: 3932.26 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:58,285 epoch 94 - iter 20/105 - loss 0.08029897 - time (sec): 0.33 - samples/sec: 3869.40 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:58,460 epoch 94 - iter 30/105 - loss 0.08021386 - time (sec): 0.50 - samples/sec: 3876.31 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:58,622 epoch 94 - iter 40/105 - loss 0.08244415 - time (sec): 0.66 - samples/sec: 3822.84 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:58,780 epoch 94 - iter 50/105 - loss 0.08622380 - time (sec): 0.82 - samples/sec: 3797.24 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:58,933 epoch 94 - iter 60/105 - loss 0.08088922 - time (sec): 0.98 - samples/sec: 3785.69 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:59,077 epoch 94 - iter 70/105 - loss 0.07714372 - time (sec): 1.12 - samples/sec: 3802.97 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:59,229 epoch 94 - iter 80/105 - loss 0.07837018 - time (sec): 1.27 - samples/sec: 3800.98 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:59,382 epoch 94 - iter 90/105 - loss 0.07799857 - time (sec): 1.42 - samples/sec: 3792.89 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:59,534 epoch 94 - iter 100/105 - loss 0.07581181 - time (sec): 1.58 - samples/sec: 3812.30 - lr: 0.000195 - momentum: 0.000000
2023-05-15 21:31:59,598 ----------------------------------------------------------------------------------------------------
2023-05-15 21:31:59,598 EPOCH 94 done: loss 0.0771 - lr: 0.000195
2023-05-15 21:32:00,407 DEV : loss 0.45624786615371704 - accuracy (micro avg)  0.9282
2023-05-15 21:32:00,419  - 4 epochs without improvement (above 'patience')-> annealing learning_rate to [9.765625e-05]
2023-05-15 21:32:00,419 ----------------------------------------------------------------------------------------------------
2023-05-15 21:32:00,419 learning rate too small - quitting training!
2023-05-15 21:32:00,419 ----------------------------------------------------------------------------------------------------
2023-05-15 21:32:00,419 Saving model ...
2023-05-15 21:32:01,555 Done.
2023-05-15 21:32:01,555 ----------------------------------------------------------------------------------------------------
2023-05-15 21:32:01,555 Loading model from best epoch ...
2023-05-15 21:32:03,450 SequenceTagger predicts: Dictionary with 71 tags: NN, $., NE, ADV, APPR, ART, VVFIN, PPER, ADDRESS, $(, ADJA, URL, VAFIN, ADJD, $,, HASH, KON, CARD, VVINF, APPRART, VVPP, EMO, VMFIN, PIS, PTKNEG, PDS, KOUS, PPOSAT, PTKVZ, PIAT, PRF, XYB, ITJ, PWAV, FM, PROAV, PWS, XY, PRELS, VAINF, VVIMP, PDAT, KOKOM, PTKZU, PTKANT, PAUSE, VVFIN_ES, PTKA, VVIZU, NINFL
2023-05-15 21:32:05,113 
Results:
- F-score (micro) 0.9316
- F-score (macro) 0.6573
- Accuracy 0.9316

By class:
              precision    recall  f1-score   support

          NN     0.9181    0.9339    0.9260      1165
          $.     0.9812    0.9946    0.9879       736
         ADV     0.9162    0.9307    0.9234       505
          NE     0.8333    0.8385    0.8359       483
        APPR     0.9582    0.9750    0.9665       400
         ART     0.9667    0.9915    0.9789       351
       VVFIN     0.9453    0.9333    0.9393       315
        PPER     0.9542    0.9927    0.9731       273
          $(     0.9808    0.9623    0.9714       265
     ADDRESS     0.9274    0.9914    0.9583       232
       VAFIN     0.9775    0.9864    0.9819       220
         URL     0.9910    1.0000    0.9955       220
        ADJA     0.9312    0.9355    0.9333       217
        ADJD     0.9149    0.7818    0.8431       220
          $,     1.0000    1.0000    1.0000       198
        HASH     0.9184    0.9507    0.9343       142
         KON     0.9568    0.9433    0.9500       141
       VVINF     0.8125    0.9100    0.8585       100
        CARD     0.9623    0.9808    0.9714       104
        VVPP     0.8725    0.9368    0.9036        95
     APPRART     1.0000    1.0000    1.0000        97
         EMO     0.8812    0.9780    0.9271        91
       VMFIN     0.8481    0.9710    0.9054        69
         PIS     0.8714    0.9104    0.8905        67
         PDS     0.9385    0.8971    0.9173        68
      PTKNEG     1.0000    1.0000    1.0000        58
      PPOSAT     1.0000    0.9636    0.9815        55
        KOUS     0.9375    0.9184    0.9278        49
       PTKVZ     0.7778    0.7143    0.7447        49
        PIAT     0.9000    0.8780    0.8889        41
         ITJ     0.7000    0.5526    0.6176        38
        PWAV     0.9062    0.9667    0.9355        30
       PROAV     0.7931    0.7667    0.7797        30
         PRF     0.9545    0.6562    0.7778        32
         XYB     0.9600    0.8889    0.9231        27
         PWS     1.0000    0.8148    0.8980        27
       VAINF     1.0000    0.9524    0.9756        21
        PDAT     0.9048    0.9500    0.9268        20
          FM     1.0000    0.6400    0.7805        25
          XY     0.7778    0.2500    0.3784        28
      PTKANT     0.8947    0.9444    0.9189        18
       PTKZU     0.9286    0.9286    0.9286        14
       PRELS     0.5714    0.7273    0.6400        11
       KOKOM     0.8333    0.8333    0.8333        12
    VVFIN_ES     1.0000    0.7000    0.8235        10
       PAUSE     0.4000    0.2500    0.3077         8
       VVIMP     0.7500    0.3333    0.4615         9
        PTKA     0.5000    0.1429    0.2222         7
        PWAT     1.0000    1.0000    1.0000         4
      PTKREZ     0.6667    0.5000    0.5714         4
       VVIZU     0.0000    0.0000    0.0000         4
      PTKPAU     0.5000    1.0000    0.6667         1
       NINFL     0.0000    0.0000    0.0000         3
    VAFIN_ES     0.0000    0.0000    0.0000         2
       VMINF     0.0000    0.0000    0.0000         2
     KOUS_ES     0.0000    0.0000    0.0000         1
        VAPP     0.0000    0.0000    0.0000         1
         XYU     0.0000    0.0000    0.0000         1
    PIS_PPER     0.0000    0.0000    0.0000         1
        KOUI     0.0000    0.0000    0.0000         1
  VAFIN_PPER     0.0000    0.0000    0.0000         1
       TRUNC     0.0000    0.0000    0.0000         1
    VVFIN_DU     0.0000    0.0000    0.0000         1
      PTKONO     0.0000    0.0000    0.0000         1
       PTKQU     0.0000    0.0000    0.0000         1
         PTK     0.0000    0.0000    0.0000         0

    accuracy                         0.9316      7423
   macro avg     0.6805    0.6515    0.6573      7423
weighted avg     0.9284    0.9316    0.9285      7423

2023-05-15 21:32:05,113 ----------------------------------------------------------------------------------------------------