initial commit
Browse files- README.md +158 -0
- loss.tsv +21 -0
- pytorch_model.bin +3 -0
- training.log +892 -0
README.md
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: de
|
7 |
+
datasets:
|
8 |
+
- conll2003
|
9 |
+
inference: false
|
10 |
+
---
|
11 |
+
|
12 |
+
## German NER in Flair (large model)
|
13 |
+
|
14 |
+
This is the large 4-class NER model for German that ships with [Flair](https://github.com/flairNLP/flair/).
|
15 |
+
|
16 |
+
F1-Score: **92,31** (CoNLL-03 German revised)
|
17 |
+
|
18 |
+
**! This model only works with Flair version 0.8 (will be released in the next few days) !**
|
19 |
+
|
20 |
+
Predicts 4 tags:
|
21 |
+
|
22 |
+
| **tag** | **meaning** |
|
23 |
+
|---------------------------------|-----------|
|
24 |
+
| PER | person name |
|
25 |
+
| LOC | location name |
|
26 |
+
| ORG | organization name |
|
27 |
+
| MISC | other name |
|
28 |
+
|
29 |
+
Based on [document-level XLM-R embeddings](https://www.aclweb.org/anthology/C18-1139/).
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
### Demo: How to use in Flair
|
34 |
+
|
35 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
36 |
+
|
37 |
+
```python
|
38 |
+
from flair.data import Sentence
|
39 |
+
from flair.models import SequenceTagger
|
40 |
+
|
41 |
+
# load tagger
|
42 |
+
tagger = SequenceTagger.load("flair/ner-german-large")
|
43 |
+
|
44 |
+
# make example sentence
|
45 |
+
sentence = Sentence("George Washington ging nach Washington")
|
46 |
+
|
47 |
+
# predict NER tags
|
48 |
+
tagger.predict(sentence)
|
49 |
+
|
50 |
+
# print sentence
|
51 |
+
print(sentence)
|
52 |
+
|
53 |
+
# print predicted NER spans
|
54 |
+
print('The following NER tags are found:')
|
55 |
+
# iterate over entities and print
|
56 |
+
for entity in sentence.get_spans('ner'):
|
57 |
+
print(entity)
|
58 |
+
|
59 |
+
```
|
60 |
+
|
61 |
+
This yields the following output:
|
62 |
+
```
|
63 |
+
Span [1,2]: "George Washington" [− Labels: PER (1.0)]
|
64 |
+
Span [5]: "Washington" [− Labels: LOC (1.0)]
|
65 |
+
```
|
66 |
+
|
67 |
+
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging nach Washington*".
|
68 |
+
|
69 |
+
|
70 |
+
---
|
71 |
+
|
72 |
+
### Training: Script to train this model
|
73 |
+
|
74 |
+
The following Flair script was used to train this model:
|
75 |
+
|
76 |
+
```python
|
77 |
+
import torch
|
78 |
+
|
79 |
+
# 1. get the corpus
|
80 |
+
from flair.datasets import CONLL_03_GERMAN
|
81 |
+
|
82 |
+
corpus = CONLL_03_GERMAN()
|
83 |
+
|
84 |
+
# 2. what tag do we want to predict?
|
85 |
+
tag_type = 'ner'
|
86 |
+
|
87 |
+
# 3. make the tag dictionary from the corpus
|
88 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
89 |
+
|
90 |
+
# 4. initialize fine-tuneable transformer embeddings WITH document context
|
91 |
+
from flair.embeddings import TransformerWordEmbeddings
|
92 |
+
|
93 |
+
embeddings = TransformerWordEmbeddings(
|
94 |
+
model='xlm-roberta-large',
|
95 |
+
layers="-1",
|
96 |
+
subtoken_pooling="first",
|
97 |
+
fine_tune=True,
|
98 |
+
use_context=True,
|
99 |
+
)
|
100 |
+
|
101 |
+
# 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
|
102 |
+
from flair.models import SequenceTagger
|
103 |
+
|
104 |
+
tagger = SequenceTagger(
|
105 |
+
hidden_size=256,
|
106 |
+
embeddings=embeddings,
|
107 |
+
tag_dictionary=tag_dictionary,
|
108 |
+
tag_type='ner',
|
109 |
+
use_crf=False,
|
110 |
+
use_rnn=False,
|
111 |
+
reproject_embeddings=False,
|
112 |
+
)
|
113 |
+
|
114 |
+
# 6. initialize trainer with AdamW optimizer
|
115 |
+
from flair.trainers import ModelTrainer
|
116 |
+
|
117 |
+
trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)
|
118 |
+
|
119 |
+
# 7. run training with XLM parameters (20 epochs, small LR)
|
120 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
121 |
+
|
122 |
+
trainer.train('resources/taggers/ner-german-large',
|
123 |
+
learning_rate=5.0e-6,
|
124 |
+
mini_batch_size=4,
|
125 |
+
mini_batch_chunk_size=1,
|
126 |
+
max_epochs=20,
|
127 |
+
scheduler=OneCycleLR,
|
128 |
+
embeddings_storage_mode='none',
|
129 |
+
weight_decay=0.,
|
130 |
+
)
|
131 |
+
|
132 |
+
)
|
133 |
+
```
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
---
|
138 |
+
|
139 |
+
### Cite
|
140 |
+
|
141 |
+
Please cite the following paper when using this model.
|
142 |
+
|
143 |
+
```
|
144 |
+
@misc{schweter2020flert,
|
145 |
+
title={FLERT: Document-Level Features for Named Entity Recognition},
|
146 |
+
author={Stefan Schweter and Alan Akbik},
|
147 |
+
year={2020},
|
148 |
+
eprint={2011.06993},
|
149 |
+
archivePrefix={arXiv},
|
150 |
+
primaryClass={cs.CL}
|
151 |
+
}
|
152 |
+
```
|
153 |
+
|
154 |
+
---
|
155 |
+
|
156 |
+
### Issues?
|
157 |
+
|
158 |
+
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
|
loss.tsv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
2 |
+
1 23:09:11 4 0.0000 0.32601759576456596
|
3 |
+
2 23:47:24 4 0.0000 0.2290581286322424
|
4 |
+
3 00:24:29 4 0.0000 0.18555273314403667
|
5 |
+
4 01:01:23 4 0.0000 0.1656336001230214
|
6 |
+
5 01:38:16 4 0.0000 0.1648284967723802
|
7 |
+
6 02:15:11 4 0.0000 0.16483939256504943
|
8 |
+
7 02:52:04 4 0.0000 0.16203806226872322
|
9 |
+
8 03:30:04 4 0.0000 0.1390128146978733
|
10 |
+
9 04:06:55 4 0.0000 0.1558572274514281
|
11 |
+
10 04:46:02 4 0.0000 0.1625431115291299
|
12 |
+
11 05:24:31 4 0.0000 0.14667205465203892
|
13 |
+
12 06:01:33 4 0.0000 0.14475093385013862
|
14 |
+
13 06:39:47 4 0.0000 0.15118245752181225
|
15 |
+
14 07:17:44 4 0.0000 0.14665753430476344
|
16 |
+
15 07:55:53 4 0.0000 0.14730402247343105
|
17 |
+
16 08:35:02 4 0.0000 0.14555113955140297
|
18 |
+
17 09:14:10 4 0.0000 0.14034509936848258
|
19 |
+
18 09:46:00 4 0.0000 0.14482688813742225
|
20 |
+
19 10:18:27 4 0.0000 0.1385989190499177
|
21 |
+
20 10:50:38 4 0.0000 0.13479246194568445
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69644e87635b92a84d0f23f67c0fce11eac39a3c9a0dae107e7e3e0d6ef20edd
|
3 |
+
size 2239866697
|
training.log
ADDED
@@ -0,0 +1,892 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2021-01-20 22:30:34,817 ----------------------------------------------------------------------------------------------------
|
2 |
+
2021-01-20 22:30:34,820 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): XLMRobertaModel(
|
5 |
+
(embeddings): RobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
|
7 |
+
(position_embeddings): Embedding(514, 1024, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 1024)
|
9 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): RobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): RobertaLayer(
|
15 |
+
(attention): RobertaAttention(
|
16 |
+
(self): RobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
18 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
19 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): RobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): RobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
30 |
+
)
|
31 |
+
(output): RobertaOutput(
|
32 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
33 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
34 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
35 |
+
)
|
36 |
+
)
|
37 |
+
(1): RobertaLayer(
|
38 |
+
(attention): RobertaAttention(
|
39 |
+
(self): RobertaSelfAttention(
|
40 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
41 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
42 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
44 |
+
)
|
45 |
+
(output): RobertaSelfOutput(
|
46 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
47 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
48 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
49 |
+
)
|
50 |
+
)
|
51 |
+
(intermediate): RobertaIntermediate(
|
52 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
53 |
+
)
|
54 |
+
(output): RobertaOutput(
|
55 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
56 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
57 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
(2): RobertaLayer(
|
61 |
+
(attention): RobertaAttention(
|
62 |
+
(self): RobertaSelfAttention(
|
63 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
64 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
65 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
67 |
+
)
|
68 |
+
(output): RobertaSelfOutput(
|
69 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
70 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
71 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
72 |
+
)
|
73 |
+
)
|
74 |
+
(intermediate): RobertaIntermediate(
|
75 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
76 |
+
)
|
77 |
+
(output): RobertaOutput(
|
78 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
79 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
80 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
81 |
+
)
|
82 |
+
)
|
83 |
+
(3): RobertaLayer(
|
84 |
+
(attention): RobertaAttention(
|
85 |
+
(self): RobertaSelfAttention(
|
86 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
87 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
88 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
90 |
+
)
|
91 |
+
(output): RobertaSelfOutput(
|
92 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
93 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
95 |
+
)
|
96 |
+
)
|
97 |
+
(intermediate): RobertaIntermediate(
|
98 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
99 |
+
)
|
100 |
+
(output): RobertaOutput(
|
101 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
102 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
103 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
104 |
+
)
|
105 |
+
)
|
106 |
+
(4): RobertaLayer(
|
107 |
+
(attention): RobertaAttention(
|
108 |
+
(self): RobertaSelfAttention(
|
109 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
110 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
111 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
112 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
113 |
+
)
|
114 |
+
(output): RobertaSelfOutput(
|
115 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
116 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
117 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
118 |
+
)
|
119 |
+
)
|
120 |
+
(intermediate): RobertaIntermediate(
|
121 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
122 |
+
)
|
123 |
+
(output): RobertaOutput(
|
124 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
125 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
126 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
127 |
+
)
|
128 |
+
)
|
129 |
+
(5): RobertaLayer(
|
130 |
+
(attention): RobertaAttention(
|
131 |
+
(self): RobertaSelfAttention(
|
132 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
133 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
134 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
135 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
136 |
+
)
|
137 |
+
(output): RobertaSelfOutput(
|
138 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
139 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(intermediate): RobertaIntermediate(
|
144 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
145 |
+
)
|
146 |
+
(output): RobertaOutput(
|
147 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
148 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
149 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
150 |
+
)
|
151 |
+
)
|
152 |
+
(6): RobertaLayer(
|
153 |
+
(attention): RobertaAttention(
|
154 |
+
(self): RobertaSelfAttention(
|
155 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
156 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
157 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
158 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
159 |
+
)
|
160 |
+
(output): RobertaSelfOutput(
|
161 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
162 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
163 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
164 |
+
)
|
165 |
+
)
|
166 |
+
(intermediate): RobertaIntermediate(
|
167 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
168 |
+
)
|
169 |
+
(output): RobertaOutput(
|
170 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
171 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
172 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
173 |
+
)
|
174 |
+
)
|
175 |
+
(7): RobertaLayer(
|
176 |
+
(attention): RobertaAttention(
|
177 |
+
(self): RobertaSelfAttention(
|
178 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
179 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
180 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
181 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
182 |
+
)
|
183 |
+
(output): RobertaSelfOutput(
|
184 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
185 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
186 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
187 |
+
)
|
188 |
+
)
|
189 |
+
(intermediate): RobertaIntermediate(
|
190 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
191 |
+
)
|
192 |
+
(output): RobertaOutput(
|
193 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
194 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
195 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
196 |
+
)
|
197 |
+
)
|
198 |
+
(8): RobertaLayer(
|
199 |
+
(attention): RobertaAttention(
|
200 |
+
(self): RobertaSelfAttention(
|
201 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
202 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
203 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
204 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
205 |
+
)
|
206 |
+
(output): RobertaSelfOutput(
|
207 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
208 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
209 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
210 |
+
)
|
211 |
+
)
|
212 |
+
(intermediate): RobertaIntermediate(
|
213 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
214 |
+
)
|
215 |
+
(output): RobertaOutput(
|
216 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
217 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
218 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(9): RobertaLayer(
|
222 |
+
(attention): RobertaAttention(
|
223 |
+
(self): RobertaSelfAttention(
|
224 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
225 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
226 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
(output): RobertaSelfOutput(
|
230 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
231 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
232 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
(intermediate): RobertaIntermediate(
|
236 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
237 |
+
)
|
238 |
+
(output): RobertaOutput(
|
239 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(10): RobertaLayer(
|
245 |
+
(attention): RobertaAttention(
|
246 |
+
(self): RobertaSelfAttention(
|
247 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
248 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
249 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
250 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
251 |
+
)
|
252 |
+
(output): RobertaSelfOutput(
|
253 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
254 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
255 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
256 |
+
)
|
257 |
+
)
|
258 |
+
(intermediate): RobertaIntermediate(
|
259 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
260 |
+
)
|
261 |
+
(output): RobertaOutput(
|
262 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
263 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
264 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
265 |
+
)
|
266 |
+
)
|
267 |
+
(11): RobertaLayer(
|
268 |
+
(attention): RobertaAttention(
|
269 |
+
(self): RobertaSelfAttention(
|
270 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
271 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
272 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
273 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
274 |
+
)
|
275 |
+
(output): RobertaSelfOutput(
|
276 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
277 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
278 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
279 |
+
)
|
280 |
+
)
|
281 |
+
(intermediate): RobertaIntermediate(
|
282 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
283 |
+
)
|
284 |
+
(output): RobertaOutput(
|
285 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
286 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
287 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
288 |
+
)
|
289 |
+
)
|
290 |
+
(12): RobertaLayer(
|
291 |
+
(attention): RobertaAttention(
|
292 |
+
(self): RobertaSelfAttention(
|
293 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
294 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
295 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
296 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
297 |
+
)
|
298 |
+
(output): RobertaSelfOutput(
|
299 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
300 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
301 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(intermediate): RobertaIntermediate(
|
305 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
306 |
+
)
|
307 |
+
(output): RobertaOutput(
|
308 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
309 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
310 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
311 |
+
)
|
312 |
+
)
|
313 |
+
(13): RobertaLayer(
|
314 |
+
(attention): RobertaAttention(
|
315 |
+
(self): RobertaSelfAttention(
|
316 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
317 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
318 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
319 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
320 |
+
)
|
321 |
+
(output): RobertaSelfOutput(
|
322 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
323 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
324 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
325 |
+
)
|
326 |
+
)
|
327 |
+
(intermediate): RobertaIntermediate(
|
328 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
329 |
+
)
|
330 |
+
(output): RobertaOutput(
|
331 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
332 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
333 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
334 |
+
)
|
335 |
+
)
|
336 |
+
(14): RobertaLayer(
|
337 |
+
(attention): RobertaAttention(
|
338 |
+
(self): RobertaSelfAttention(
|
339 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
340 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
341 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
342 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
343 |
+
)
|
344 |
+
(output): RobertaSelfOutput(
|
345 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
346 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
347 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
348 |
+
)
|
349 |
+
)
|
350 |
+
(intermediate): RobertaIntermediate(
|
351 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
352 |
+
)
|
353 |
+
(output): RobertaOutput(
|
354 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
355 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
356 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
357 |
+
)
|
358 |
+
)
|
359 |
+
(15): RobertaLayer(
|
360 |
+
(attention): RobertaAttention(
|
361 |
+
(self): RobertaSelfAttention(
|
362 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
363 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
364 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
365 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
366 |
+
)
|
367 |
+
(output): RobertaSelfOutput(
|
368 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
369 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
370 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
371 |
+
)
|
372 |
+
)
|
373 |
+
(intermediate): RobertaIntermediate(
|
374 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
375 |
+
)
|
376 |
+
(output): RobertaOutput(
|
377 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
378 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
379 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
380 |
+
)
|
381 |
+
)
|
382 |
+
(16): RobertaLayer(
|
383 |
+
(attention): RobertaAttention(
|
384 |
+
(self): RobertaSelfAttention(
|
385 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
386 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
387 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
388 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
389 |
+
)
|
390 |
+
(output): RobertaSelfOutput(
|
391 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
392 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
393 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
394 |
+
)
|
395 |
+
)
|
396 |
+
(intermediate): RobertaIntermediate(
|
397 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
398 |
+
)
|
399 |
+
(output): RobertaOutput(
|
400 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
401 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
402 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
403 |
+
)
|
404 |
+
)
|
405 |
+
(17): RobertaLayer(
|
406 |
+
(attention): RobertaAttention(
|
407 |
+
(self): RobertaSelfAttention(
|
408 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
409 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
410 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
411 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
412 |
+
)
|
413 |
+
(output): RobertaSelfOutput(
|
414 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
415 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
416 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
417 |
+
)
|
418 |
+
)
|
419 |
+
(intermediate): RobertaIntermediate(
|
420 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
421 |
+
)
|
422 |
+
(output): RobertaOutput(
|
423 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
424 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
425 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
426 |
+
)
|
427 |
+
)
|
428 |
+
(18): RobertaLayer(
|
429 |
+
(attention): RobertaAttention(
|
430 |
+
(self): RobertaSelfAttention(
|
431 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
432 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
433 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
434 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
435 |
+
)
|
436 |
+
(output): RobertaSelfOutput(
|
437 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
438 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
439 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
440 |
+
)
|
441 |
+
)
|
442 |
+
(intermediate): RobertaIntermediate(
|
443 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
444 |
+
)
|
445 |
+
(output): RobertaOutput(
|
446 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
447 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
448 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
449 |
+
)
|
450 |
+
)
|
451 |
+
(19): RobertaLayer(
|
452 |
+
(attention): RobertaAttention(
|
453 |
+
(self): RobertaSelfAttention(
|
454 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
455 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
456 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
457 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
458 |
+
)
|
459 |
+
(output): RobertaSelfOutput(
|
460 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
461 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
462 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
463 |
+
)
|
464 |
+
)
|
465 |
+
(intermediate): RobertaIntermediate(
|
466 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
467 |
+
)
|
468 |
+
(output): RobertaOutput(
|
469 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
470 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
471 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
472 |
+
)
|
473 |
+
)
|
474 |
+
(20): RobertaLayer(
|
475 |
+
(attention): RobertaAttention(
|
476 |
+
(self): RobertaSelfAttention(
|
477 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
478 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
479 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
480 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
481 |
+
)
|
482 |
+
(output): RobertaSelfOutput(
|
483 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
484 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
485 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
486 |
+
)
|
487 |
+
)
|
488 |
+
(intermediate): RobertaIntermediate(
|
489 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
490 |
+
)
|
491 |
+
(output): RobertaOutput(
|
492 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
493 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
494 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
495 |
+
)
|
496 |
+
)
|
497 |
+
(21): RobertaLayer(
|
498 |
+
(attention): RobertaAttention(
|
499 |
+
(self): RobertaSelfAttention(
|
500 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
501 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
502 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
503 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
504 |
+
)
|
505 |
+
(output): RobertaSelfOutput(
|
506 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
507 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
508 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
509 |
+
)
|
510 |
+
)
|
511 |
+
(intermediate): RobertaIntermediate(
|
512 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
513 |
+
)
|
514 |
+
(output): RobertaOutput(
|
515 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
516 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
517 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
518 |
+
)
|
519 |
+
)
|
520 |
+
(22): RobertaLayer(
|
521 |
+
(attention): RobertaAttention(
|
522 |
+
(self): RobertaSelfAttention(
|
523 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
524 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
525 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
526 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
527 |
+
)
|
528 |
+
(output): RobertaSelfOutput(
|
529 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
530 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
531 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
532 |
+
)
|
533 |
+
)
|
534 |
+
(intermediate): RobertaIntermediate(
|
535 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
536 |
+
)
|
537 |
+
(output): RobertaOutput(
|
538 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
539 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
540 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
541 |
+
)
|
542 |
+
)
|
543 |
+
(23): RobertaLayer(
|
544 |
+
(attention): RobertaAttention(
|
545 |
+
(self): RobertaSelfAttention(
|
546 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
547 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
548 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
549 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
550 |
+
)
|
551 |
+
(output): RobertaSelfOutput(
|
552 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
553 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
554 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
555 |
+
)
|
556 |
+
)
|
557 |
+
(intermediate): RobertaIntermediate(
|
558 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
559 |
+
)
|
560 |
+
(output): RobertaOutput(
|
561 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
562 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
563 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
564 |
+
)
|
565 |
+
)
|
566 |
+
)
|
567 |
+
)
|
568 |
+
(pooler): RobertaPooler(
|
569 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
570 |
+
(activation): Tanh()
|
571 |
+
)
|
572 |
+
)
|
573 |
+
)
|
574 |
+
(word_dropout): WordDropout(p=0.05)
|
575 |
+
(locked_dropout): LockedDropout(p=0.5)
|
576 |
+
(linear): Linear(in_features=1024, out_features=20, bias=True)
|
577 |
+
(beta): 1.0
|
578 |
+
(weights): None
|
579 |
+
(weight_tensor) None
|
580 |
+
)"
|
581 |
+
2021-01-20 22:30:34,821 ----------------------------------------------------------------------------------------------------
|
582 |
+
2021-01-20 22:30:34,821 Corpus: "Corpus: 16093 train + 2969 dev + 5314 test sentences"
|
583 |
+
2021-01-20 22:30:34,821 ----------------------------------------------------------------------------------------------------
|
584 |
+
2021-01-20 22:30:34,821 Parameters:
|
585 |
+
2021-01-20 22:30:34,821 - learning_rate: "5e-06"
|
586 |
+
2021-01-20 22:30:34,821 - mini_batch_size: "4"
|
587 |
+
2021-01-20 22:30:34,821 - patience: "3"
|
588 |
+
2021-01-20 22:30:34,821 - anneal_factor: "0.5"
|
589 |
+
2021-01-20 22:30:34,822 - max_epochs: "20"
|
590 |
+
2021-01-20 22:30:34,822 - shuffle: "True"
|
591 |
+
2021-01-20 22:30:34,822 - train_with_dev: "True"
|
592 |
+
2021-01-20 22:30:34,822 - batch_growth_annealing: "False"
|
593 |
+
2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
|
594 |
+
2021-01-20 22:30:34,822 Model training base path: "resources/contextdrop/flert-nl-ft+dev-xlm-roberta-large-context+drop-64-True-127"
|
595 |
+
2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
|
596 |
+
2021-01-20 22:30:34,822 Device: cuda:0
|
597 |
+
2021-01-20 22:30:34,822 ----------------------------------------------------------------------------------------------------
|
598 |
+
2021-01-20 22:30:34,822 Embeddings storage mode: none
|
599 |
+
2021-01-20 22:30:34,833 ----------------------------------------------------------------------------------------------------
|
600 |
+
2021-01-20 22:34:24,138 epoch 1 - iter 476/4766 - loss 0.75007446 - samples/sec: 8.30 - lr: 0.000005
|
601 |
+
2021-01-20 22:38:11,813 epoch 1 - iter 952/4766 - loss 0.55138470 - samples/sec: 8.36 - lr: 0.000005
|
602 |
+
2021-01-20 22:42:03,548 epoch 1 - iter 1428/4766 - loss 0.46882800 - samples/sec: 8.22 - lr: 0.000005
|
603 |
+
2021-01-20 22:45:56,496 epoch 1 - iter 1904/4766 - loss 0.42568348 - samples/sec: 8.17 - lr: 0.000005
|
604 |
+
2021-01-20 22:49:48,705 epoch 1 - iter 2380/4766 - loss 0.40460601 - samples/sec: 8.20 - lr: 0.000005
|
605 |
+
2021-01-20 22:53:40,511 epoch 1 - iter 2856/4766 - loss 0.38479376 - samples/sec: 8.21 - lr: 0.000005
|
606 |
+
2021-01-20 22:57:31,693 epoch 1 - iter 3332/4766 - loss 0.36783532 - samples/sec: 8.24 - lr: 0.000005
|
607 |
+
2021-01-20 23:01:24,894 epoch 1 - iter 3808/4766 - loss 0.35297261 - samples/sec: 8.17 - lr: 0.000005
|
608 |
+
2021-01-20 23:05:16,842 epoch 1 - iter 4284/4766 - loss 0.33562353 - samples/sec: 8.21 - lr: 0.000005
|
609 |
+
2021-01-20 23:09:08,356 epoch 1 - iter 4760/4766 - loss 0.32624764 - samples/sec: 8.22 - lr: 0.000005
|
610 |
+
2021-01-20 23:09:11,043 ----------------------------------------------------------------------------------------------------
|
611 |
+
2021-01-20 23:09:11,044 EPOCH 1 done: loss 0.3260 - lr 0.0000050
|
612 |
+
2021-01-20 23:09:11,044 BAD EPOCHS (no improvement): 4
|
613 |
+
2021-01-20 23:09:11,056 ----------------------------------------------------------------------------------------------------
|
614 |
+
2021-01-20 23:13:02,174 epoch 2 - iter 476/4766 - loss 0.19592687 - samples/sec: 8.24 - lr: 0.000005
|
615 |
+
2021-01-20 23:16:52,896 epoch 2 - iter 952/4766 - loss 0.19343522 - samples/sec: 8.25 - lr: 0.000005
|
616 |
+
2021-01-20 23:20:44,314 epoch 2 - iter 1428/4766 - loss 0.19096819 - samples/sec: 8.23 - lr: 0.000005
|
617 |
+
2021-01-20 23:24:34,798 epoch 2 - iter 1904/4766 - loss 0.20419720 - samples/sec: 8.26 - lr: 0.000005
|
618 |
+
2021-01-20 23:28:25,592 epoch 2 - iter 2380/4766 - loss 0.20562715 - samples/sec: 8.25 - lr: 0.000005
|
619 |
+
2021-01-20 23:32:18,034 epoch 2 - iter 2856/4766 - loss 0.21479885 - samples/sec: 8.19 - lr: 0.000005
|
620 |
+
2021-01-20 23:36:11,088 epoch 2 - iter 3332/4766 - loss 0.22119955 - samples/sec: 8.17 - lr: 0.000005
|
621 |
+
2021-01-20 23:39:57,520 epoch 2 - iter 3808/4766 - loss 0.22084426 - samples/sec: 8.41 - lr: 0.000005
|
622 |
+
2021-01-20 23:43:40,262 epoch 2 - iter 4284/4766 - loss 0.22666022 - samples/sec: 8.55 - lr: 0.000005
|
623 |
+
2021-01-20 23:47:22,340 epoch 2 - iter 4760/4766 - loss 0.22898245 - samples/sec: 8.57 - lr: 0.000005
|
624 |
+
2021-01-20 23:47:24,928 ----------------------------------------------------------------------------------------------------
|
625 |
+
2021-01-20 23:47:24,928 EPOCH 2 done: loss 0.2291 - lr 0.0000049
|
626 |
+
2021-01-20 23:47:24,928 BAD EPOCHS (no improvement): 4
|
627 |
+
2021-01-20 23:47:24,932 ----------------------------------------------------------------------------------------------------
|
628 |
+
2021-01-20 23:51:06,331 epoch 3 - iter 476/4766 - loss 0.17300695 - samples/sec: 8.60 - lr: 0.000005
|
629 |
+
2021-01-20 23:54:48,800 epoch 3 - iter 952/4766 - loss 0.18720678 - samples/sec: 8.56 - lr: 0.000005
|
630 |
+
2021-01-20 23:58:33,629 epoch 3 - iter 1428/4766 - loss 0.18315013 - samples/sec: 8.47 - lr: 0.000005
|
631 |
+
2021-01-21 00:02:15,888 epoch 3 - iter 1904/4766 - loss 0.18674032 - samples/sec: 8.57 - lr: 0.000005
|
632 |
+
2021-01-21 00:05:57,520 epoch 3 - iter 2380/4766 - loss 0.19216686 - samples/sec: 8.59 - lr: 0.000005
|
633 |
+
2021-01-21 00:09:39,305 epoch 3 - iter 2856/4766 - loss 0.19094677 - samples/sec: 8.59 - lr: 0.000005
|
634 |
+
2021-01-21 00:13:20,604 epoch 3 - iter 3332/4766 - loss 0.18956430 - samples/sec: 8.60 - lr: 0.000005
|
635 |
+
2021-01-21 00:17:01,961 epoch 3 - iter 3808/4766 - loss 0.18552889 - samples/sec: 8.60 - lr: 0.000005
|
636 |
+
2021-01-21 00:20:43,755 epoch 3 - iter 4284/4766 - loss 0.18237621 - samples/sec: 8.59 - lr: 0.000005
|
637 |
+
2021-01-21 00:24:26,424 epoch 3 - iter 4760/4766 - loss 0.18548491 - samples/sec: 8.55 - lr: 0.000005
|
638 |
+
2021-01-21 00:24:29,094 ----------------------------------------------------------------------------------------------------
|
639 |
+
2021-01-21 00:24:29,094 EPOCH 3 done: loss 0.1856 - lr 0.0000047
|
640 |
+
2021-01-21 00:24:29,094 BAD EPOCHS (no improvement): 4
|
641 |
+
2021-01-21 00:24:29,113 ----------------------------------------------------------------------------------------------------
|
642 |
+
2021-01-21 00:28:10,733 epoch 4 - iter 476/4766 - loss 0.16395309 - samples/sec: 8.59 - lr: 0.000005
|
643 |
+
2021-01-21 00:31:51,536 epoch 4 - iter 952/4766 - loss 0.15725064 - samples/sec: 8.62 - lr: 0.000005
|
644 |
+
2021-01-21 00:35:32,411 epoch 4 - iter 1428/4766 - loss 0.15046027 - samples/sec: 8.62 - lr: 0.000005
|
645 |
+
2021-01-21 00:39:11,999 epoch 4 - iter 1904/4766 - loss 0.15211000 - samples/sec: 8.67 - lr: 0.000005
|
646 |
+
2021-01-21 00:42:52,983 epoch 4 - iter 2380/4766 - loss 0.15810432 - samples/sec: 8.62 - lr: 0.000005
|
647 |
+
2021-01-21 00:46:35,874 epoch 4 - iter 2856/4766 - loss 0.15986602 - samples/sec: 8.54 - lr: 0.000005
|
648 |
+
2021-01-21 00:50:17,362 epoch 4 - iter 3332/4766 - loss 0.15994249 - samples/sec: 8.60 - lr: 0.000005
|
649 |
+
2021-01-21 00:53:58,810 epoch 4 - iter 3808/4766 - loss 0.15891707 - samples/sec: 8.60 - lr: 0.000005
|
650 |
+
2021-01-21 00:57:39,682 epoch 4 - iter 4284/4766 - loss 0.16493451 - samples/sec: 8.62 - lr: 0.000005
|
651 |
+
2021-01-21 01:01:20,887 epoch 4 - iter 4760/4766 - loss 0.16578159 - samples/sec: 8.61 - lr: 0.000005
|
652 |
+
2021-01-21 01:01:23,546 ----------------------------------------------------------------------------------------------------
|
653 |
+
2021-01-21 01:01:23,546 EPOCH 4 done: loss 0.1656 - lr 0.0000045
|
654 |
+
2021-01-21 01:01:23,546 BAD EPOCHS (no improvement): 4
|
655 |
+
2021-01-21 01:01:23,549 ----------------------------------------------------------------------------------------------------
|
656 |
+
2021-01-21 01:05:05,137 epoch 5 - iter 476/4766 - loss 0.16713775 - samples/sec: 8.59 - lr: 0.000004
|
657 |
+
2021-01-21 01:08:46,452 epoch 5 - iter 952/4766 - loss 0.15990526 - samples/sec: 8.60 - lr: 0.000004
|
658 |
+
2021-01-21 01:12:28,191 epoch 5 - iter 1428/4766 - loss 0.16156578 - samples/sec: 8.59 - lr: 0.000004
|
659 |
+
2021-01-21 01:16:08,457 epoch 5 - iter 1904/4766 - loss 0.16763724 - samples/sec: 8.64 - lr: 0.000004
|
660 |
+
2021-01-21 01:19:50,350 epoch 5 - iter 2380/4766 - loss 0.16378794 - samples/sec: 8.58 - lr: 0.000004
|
661 |
+
2021-01-21 01:23:30,578 epoch 5 - iter 2856/4766 - loss 0.16849384 - samples/sec: 8.65 - lr: 0.000004
|
662 |
+
2021-01-21 01:27:10,395 epoch 5 - iter 3332/4766 - loss 0.16382910 - samples/sec: 8.66 - lr: 0.000004
|
663 |
+
2021-01-21 01:30:51,552 epoch 5 - iter 3808/4766 - loss 0.16654785 - samples/sec: 8.61 - lr: 0.000004
|
664 |
+
2021-01-21 01:34:33,151 epoch 5 - iter 4284/4766 - loss 0.16617839 - samples/sec: 8.59 - lr: 0.000004
|
665 |
+
2021-01-21 01:38:13,465 epoch 5 - iter 4760/4766 - loss 0.16489933 - samples/sec: 8.64 - lr: 0.000004
|
666 |
+
2021-01-21 01:38:16,065 ----------------------------------------------------------------------------------------------------
|
667 |
+
2021-01-21 01:38:16,065 EPOCH 5 done: loss 0.1648 - lr 0.0000043
|
668 |
+
2021-01-21 01:38:16,066 BAD EPOCHS (no improvement): 4
|
669 |
+
2021-01-21 01:38:16,069 ----------------------------------------------------------------------------------------------------
|
670 |
+
2021-01-21 01:41:56,751 epoch 6 - iter 476/4766 - loss 0.15331536 - samples/sec: 8.63 - lr: 0.000004
|
671 |
+
2021-01-21 01:45:37,683 epoch 6 - iter 952/4766 - loss 0.16628115 - samples/sec: 8.62 - lr: 0.000004
|
672 |
+
2021-01-21 01:49:18,657 epoch 6 - iter 1428/4766 - loss 0.16559479 - samples/sec: 8.62 - lr: 0.000004
|
673 |
+
2021-01-21 01:52:59,337 epoch 6 - iter 1904/4766 - loss 0.16505749 - samples/sec: 8.63 - lr: 0.000004
|
674 |
+
2021-01-21 01:56:41,398 epoch 6 - iter 2380/4766 - loss 0.16408360 - samples/sec: 8.57 - lr: 0.000004
|
675 |
+
2021-01-21 02:00:22,782 epoch 6 - iter 2856/4766 - loss 0.16367926 - samples/sec: 8.60 - lr: 0.000004
|
676 |
+
2021-01-21 02:04:04,491 epoch 6 - iter 3332/4766 - loss 0.16323212 - samples/sec: 8.59 - lr: 0.000004
|
677 |
+
2021-01-21 02:07:46,417 epoch 6 - iter 3808/4766 - loss 0.16476110 - samples/sec: 8.58 - lr: 0.000004
|
678 |
+
2021-01-21 02:11:27,402 epoch 6 - iter 4284/4766 - loss 0.16556307 - samples/sec: 8.62 - lr: 0.000004
|
679 |
+
2021-01-21 02:15:08,877 epoch 6 - iter 4760/4766 - loss 0.16431570 - samples/sec: 8.60 - lr: 0.000004
|
680 |
+
2021-01-21 02:15:11,479 ----------------------------------------------------------------------------------------------------
|
681 |
+
2021-01-21 02:15:11,480 EPOCH 6 done: loss 0.1648 - lr 0.0000040
|
682 |
+
2021-01-21 02:15:11,480 BAD EPOCHS (no improvement): 4
|
683 |
+
2021-01-21 02:15:11,483 ----------------------------------------------------------------------------------------------------
|
684 |
+
2021-01-21 02:18:51,563 epoch 7 - iter 476/4766 - loss 0.16677021 - samples/sec: 8.65 - lr: 0.000004
|
685 |
+
2021-01-21 02:22:33,148 epoch 7 - iter 952/4766 - loss 0.15199812 - samples/sec: 8.59 - lr: 0.000004
|
686 |
+
2021-01-21 02:26:14,043 epoch 7 - iter 1428/4766 - loss 0.15998079 - samples/sec: 8.62 - lr: 0.000004
|
687 |
+
2021-01-21 02:29:54,619 epoch 7 - iter 1904/4766 - loss 0.16023978 - samples/sec: 8.63 - lr: 0.000004
|
688 |
+
2021-01-21 02:33:35,634 epoch 7 - iter 2380/4766 - loss 0.15702676 - samples/sec: 8.62 - lr: 0.000004
|
689 |
+
2021-01-21 02:37:16,548 epoch 7 - iter 2856/4766 - loss 0.15350997 - samples/sec: 8.62 - lr: 0.000004
|
690 |
+
2021-01-21 02:40:57,346 epoch 7 - iter 3332/4766 - loss 0.15488921 - samples/sec: 8.62 - lr: 0.000004
|
691 |
+
2021-01-21 02:44:38,614 epoch 7 - iter 3808/4766 - loss 0.15987947 - samples/sec: 8.61 - lr: 0.000004
|
692 |
+
2021-01-21 02:48:20,175 epoch 7 - iter 4284/4766 - loss 0.16276295 - samples/sec: 8.59 - lr: 0.000004
|
693 |
+
2021-01-21 02:52:01,908 epoch 7 - iter 4760/4766 - loss 0.16197284 - samples/sec: 8.59 - lr: 0.000004
|
694 |
+
2021-01-21 02:52:04,547 ----------------------------------------------------------------------------------------------------
|
695 |
+
2021-01-21 02:52:04,547 EPOCH 7 done: loss 0.1620 - lr 0.0000036
|
696 |
+
2021-01-21 02:52:04,547 BAD EPOCHS (no improvement): 4
|
697 |
+
2021-01-21 02:52:04,550 ----------------------------------------------------------------------------------------------------
|
698 |
+
2021-01-21 02:55:44,290 epoch 8 - iter 476/4766 - loss 0.12739570 - samples/sec: 8.67 - lr: 0.000004
|
699 |
+
2021-01-21 02:59:24,874 epoch 8 - iter 952/4766 - loss 0.13459088 - samples/sec: 8.63 - lr: 0.000004
|
700 |
+
2021-01-21 03:03:05,915 epoch 8 - iter 1428/4766 - loss 0.13249889 - samples/sec: 8.61 - lr: 0.000004
|
701 |
+
2021-01-21 03:07:51,438 epoch 8 - iter 1904/4766 - loss 0.13557002 - samples/sec: 6.67 - lr: 0.000003
|
702 |
+
2021-01-21 03:11:32,960 epoch 8 - iter 2380/4766 - loss 0.13750847 - samples/sec: 8.60 - lr: 0.000003
|
703 |
+
2021-01-21 03:15:15,240 epoch 8 - iter 2856/4766 - loss 0.13920395 - samples/sec: 8.57 - lr: 0.000003
|
704 |
+
2021-01-21 03:18:56,540 epoch 8 - iter 3332/4766 - loss 0.14196834 - samples/sec: 8.60 - lr: 0.000003
|
705 |
+
2021-01-21 03:22:38,133 epoch 8 - iter 3808/4766 - loss 0.14013979 - samples/sec: 8.59 - lr: 0.000003
|
706 |
+
2021-01-21 03:26:20,491 epoch 8 - iter 4284/4766 - loss 0.14057112 - samples/sec: 8.56 - lr: 0.000003
|
707 |
+
2021-01-21 03:30:01,506 epoch 8 - iter 4760/4766 - loss 0.13849626 - samples/sec: 8.62 - lr: 0.000003
|
708 |
+
2021-01-21 03:30:04,136 ----------------------------------------------------------------------------------------------------
|
709 |
+
2021-01-21 03:30:04,136 EPOCH 8 done: loss 0.1390 - lr 0.0000033
|
710 |
+
2021-01-21 03:30:04,136 BAD EPOCHS (no improvement): 4
|
711 |
+
2021-01-21 03:30:04,139 ----------------------------------------------------------------------------------------------------
|
712 |
+
2021-01-21 03:33:43,789 epoch 9 - iter 476/4766 - loss 0.10898947 - samples/sec: 8.67 - lr: 0.000003
|
713 |
+
2021-01-21 03:37:24,937 epoch 9 - iter 952/4766 - loss 0.13779523 - samples/sec: 8.61 - lr: 0.000003
|
714 |
+
2021-01-21 03:41:06,312 epoch 9 - iter 1428/4766 - loss 0.13999643 - samples/sec: 8.60 - lr: 0.000003
|
715 |
+
2021-01-21 03:44:48,413 epoch 9 - iter 1904/4766 - loss 0.14934964 - samples/sec: 8.57 - lr: 0.000003
|
716 |
+
2021-01-21 03:48:28,888 epoch 9 - iter 2380/4766 - loss 0.14817911 - samples/sec: 8.64 - lr: 0.000003
|
717 |
+
2021-01-21 03:52:09,651 epoch 9 - iter 2856/4766 - loss 0.14990197 - samples/sec: 8.63 - lr: 0.000003
|
718 |
+
2021-01-21 03:55:50,402 epoch 9 - iter 3332/4766 - loss 0.15379190 - samples/sec: 8.63 - lr: 0.000003
|
719 |
+
2021-01-21 03:59:32,243 epoch 9 - iter 3808/4766 - loss 0.15360767 - samples/sec: 8.58 - lr: 0.000003
|
720 |
+
2021-01-21 04:03:12,525 epoch 9 - iter 4284/4766 - loss 0.15584102 - samples/sec: 8.64 - lr: 0.000003
|
721 |
+
2021-01-21 04:06:52,524 epoch 9 - iter 4760/4766 - loss 0.15575696 - samples/sec: 8.66 - lr: 0.000003
|
722 |
+
2021-01-21 04:06:55,162 ----------------------------------------------------------------------------------------------------
|
723 |
+
2021-01-21 04:06:55,162 EPOCH 9 done: loss 0.1559 - lr 0.0000029
|
724 |
+
2021-01-21 04:06:55,162 BAD EPOCHS (no improvement): 4
|
725 |
+
2021-01-21 04:06:55,174 ----------------------------------------------------------------------------------------------------
|
726 |
+
2021-01-21 04:10:34,900 epoch 10 - iter 476/4766 - loss 0.16271080 - samples/sec: 8.67 - lr: 0.000003
|
727 |
+
2021-01-21 04:14:20,175 epoch 10 - iter 952/4766 - loss 0.16397437 - samples/sec: 8.45 - lr: 0.000003
|
728 |
+
2021-01-21 04:18:06,987 epoch 10 - iter 1428/4766 - loss 0.15725672 - samples/sec: 8.40 - lr: 0.000003
|
729 |
+
2021-01-21 04:21:49,215 epoch 10 - iter 1904/4766 - loss 0.15423771 - samples/sec: 8.57 - lr: 0.000003
|
730 |
+
2021-01-21 04:25:28,895 epoch 10 - iter 2380/4766 - loss 0.15973856 - samples/sec: 8.67 - lr: 0.000003
|
731 |
+
2021-01-21 04:29:23,464 epoch 10 - iter 2856/4766 - loss 0.16022188 - samples/sec: 8.12 - lr: 0.000003
|
732 |
+
2021-01-21 04:33:45,631 epoch 10 - iter 3332/4766 - loss 0.16116028 - samples/sec: 7.26 - lr: 0.000003
|
733 |
+
2021-01-21 04:37:33,764 epoch 10 - iter 3808/4766 - loss 0.16539610 - samples/sec: 8.35 - lr: 0.000003
|
734 |
+
2021-01-21 04:42:13,315 epoch 10 - iter 4284/4766 - loss 0.16546677 - samples/sec: 6.81 - lr: 0.000003
|
735 |
+
2021-01-21 04:45:59,709 epoch 10 - iter 4760/4766 - loss 0.16271866 - samples/sec: 8.41 - lr: 0.000003
|
736 |
+
2021-01-21 04:46:02,392 ----------------------------------------------------------------------------------------------------
|
737 |
+
2021-01-21 04:46:02,392 EPOCH 10 done: loss 0.1625 - lr 0.0000025
|
738 |
+
2021-01-21 04:46:02,392 BAD EPOCHS (no improvement): 4
|
739 |
+
2021-01-21 04:46:02,396 ----------------------------------------------------------------------------------------------------
|
740 |
+
2021-01-21 04:49:48,063 epoch 11 - iter 476/4766 - loss 0.12302402 - samples/sec: 8.44 - lr: 0.000002
|
741 |
+
2021-01-21 04:53:27,641 epoch 11 - iter 952/4766 - loss 0.14938588 - samples/sec: 8.67 - lr: 0.000002
|
742 |
+
2021-01-21 04:57:17,073 epoch 11 - iter 1428/4766 - loss 0.15249822 - samples/sec: 8.30 - lr: 0.000002
|
743 |
+
2021-01-21 05:01:04,811 epoch 11 - iter 1904/4766 - loss 0.15278022 - samples/sec: 8.36 - lr: 0.000002
|
744 |
+
2021-01-21 05:04:54,048 epoch 11 - iter 2380/4766 - loss 0.14726127 - samples/sec: 8.31 - lr: 0.000002
|
745 |
+
2021-01-21 05:08:43,193 epoch 11 - iter 2856/4766 - loss 0.14789523 - samples/sec: 8.31 - lr: 0.000002
|
746 |
+
2021-01-21 05:13:06,493 epoch 11 - iter 3332/4766 - loss 0.14714088 - samples/sec: 7.23 - lr: 0.000002
|
747 |
+
2021-01-21 05:16:50,965 epoch 11 - iter 3808/4766 - loss 0.14520739 - samples/sec: 8.48 - lr: 0.000002
|
748 |
+
2021-01-21 05:20:39,478 epoch 11 - iter 4284/4766 - loss 0.14887415 - samples/sec: 8.33 - lr: 0.000002
|
749 |
+
2021-01-21 05:24:29,111 epoch 11 - iter 4760/4766 - loss 0.14659288 - samples/sec: 8.29 - lr: 0.000002
|
750 |
+
2021-01-21 05:24:31,802 ----------------------------------------------------------------------------------------------------
|
751 |
+
2021-01-21 05:24:31,802 EPOCH 11 done: loss 0.1467 - lr 0.0000021
|
752 |
+
2021-01-21 05:24:31,802 BAD EPOCHS (no improvement): 4
|
753 |
+
2021-01-21 05:24:31,805 ----------------------------------------------------------------------------------------------------
|
754 |
+
2021-01-21 05:28:14,475 epoch 12 - iter 476/4766 - loss 0.15315567 - samples/sec: 8.55 - lr: 0.000002
|
755 |
+
2021-01-21 05:31:59,651 epoch 12 - iter 952/4766 - loss 0.16653427 - samples/sec: 8.46 - lr: 0.000002
|
756 |
+
2021-01-21 05:35:41,742 epoch 12 - iter 1428/4766 - loss 0.15943798 - samples/sec: 8.57 - lr: 0.000002
|
757 |
+
2021-01-21 05:39:23,773 epoch 12 - iter 1904/4766 - loss 0.14738183 - samples/sec: 8.58 - lr: 0.000002
|
758 |
+
2021-01-21 05:43:07,737 epoch 12 - iter 2380/4766 - loss 0.14768732 - samples/sec: 8.50 - lr: 0.000002
|
759 |
+
2021-01-21 05:46:50,097 epoch 12 - iter 2856/4766 - loss 0.14579714 - samples/sec: 8.56 - lr: 0.000002
|
760 |
+
2021-01-21 05:50:30,750 epoch 12 - iter 3332/4766 - loss 0.14426661 - samples/sec: 8.63 - lr: 0.000002
|
761 |
+
2021-01-21 05:54:10,533 epoch 12 - iter 3808/4766 - loss 0.14331669 - samples/sec: 8.66 - lr: 0.000002
|
762 |
+
2021-01-21 05:57:51,040 epoch 12 - iter 4284/4766 - loss 0.14558392 - samples/sec: 8.64 - lr: 0.000002
|
763 |
+
2021-01-21 06:01:31,114 epoch 12 - iter 4760/4766 - loss 0.14487869 - samples/sec: 8.65 - lr: 0.000002
|
764 |
+
2021-01-21 06:01:33,698 ----------------------------------------------------------------------------------------------------
|
765 |
+
2021-01-21 06:01:33,699 EPOCH 12 done: loss 0.1448 - lr 0.0000017
|
766 |
+
2021-01-21 06:01:33,699 BAD EPOCHS (no improvement): 4
|
767 |
+
2021-01-21 06:01:33,728 ----------------------------------------------------------------------------------------------------
|
768 |
+
2021-01-21 06:05:13,916 epoch 13 - iter 476/4766 - loss 0.14655107 - samples/sec: 8.65 - lr: 0.000002
|
769 |
+
2021-01-21 06:09:00,692 epoch 13 - iter 952/4766 - loss 0.15434704 - samples/sec: 8.40 - lr: 0.000002
|
770 |
+
2021-01-21 06:13:01,021 epoch 13 - iter 1428/4766 - loss 0.14097797 - samples/sec: 7.92 - lr: 0.000002
|
771 |
+
2021-01-21 06:16:53,666 epoch 13 - iter 1904/4766 - loss 0.14277714 - samples/sec: 8.18 - lr: 0.000002
|
772 |
+
2021-01-21 06:20:42,859 epoch 13 - iter 2380/4766 - loss 0.14354307 - samples/sec: 8.31 - lr: 0.000002
|
773 |
+
2021-01-21 06:24:31,146 epoch 13 - iter 2856/4766 - loss 0.14679997 - samples/sec: 8.34 - lr: 0.000002
|
774 |
+
2021-01-21 06:28:19,832 epoch 13 - iter 3332/4766 - loss 0.14780579 - samples/sec: 8.33 - lr: 0.000001
|
775 |
+
2021-01-21 06:32:08,563 epoch 13 - iter 3808/4766 - loss 0.14877294 - samples/sec: 8.32 - lr: 0.000001
|
776 |
+
2021-01-21 06:35:55,834 epoch 13 - iter 4284/4766 - loss 0.14803883 - samples/sec: 8.38 - lr: 0.000001
|
777 |
+
2021-01-21 06:39:44,884 epoch 13 - iter 4760/4766 - loss 0.15072743 - samples/sec: 8.31 - lr: 0.000001
|
778 |
+
2021-01-21 06:39:47,605 ----------------------------------------------------------------------------------------------------
|
779 |
+
2021-01-21 06:39:47,605 EPOCH 13 done: loss 0.1512 - lr 0.0000014
|
780 |
+
2021-01-21 06:39:47,605 BAD EPOCHS (no improvement): 4
|
781 |
+
2021-01-21 06:39:47,610 ----------------------------------------------------------------------------------------------------
|
782 |
+
2021-01-21 06:43:34,894 epoch 14 - iter 476/4766 - loss 0.11684375 - samples/sec: 8.38 - lr: 0.000001
|
783 |
+
2021-01-21 06:47:22,075 epoch 14 - iter 952/4766 - loss 0.13685666 - samples/sec: 8.38 - lr: 0.000001
|
784 |
+
2021-01-21 06:51:09,835 epoch 14 - iter 1428/4766 - loss 0.15137543 - samples/sec: 8.36 - lr: 0.000001
|
785 |
+
2021-01-21 06:54:56,328 epoch 14 - iter 1904/4766 - loss 0.15223388 - samples/sec: 8.41 - lr: 0.000001
|
786 |
+
2021-01-21 06:58:43,179 epoch 14 - iter 2380/4766 - loss 0.15232770 - samples/sec: 8.39 - lr: 0.000001
|
787 |
+
2021-01-21 07:02:29,960 epoch 14 - iter 2856/4766 - loss 0.15376646 - samples/sec: 8.40 - lr: 0.000001
|
788 |
+
2021-01-21 07:06:16,979 epoch 14 - iter 3332/4766 - loss 0.14910628 - samples/sec: 8.39 - lr: 0.000001
|
789 |
+
2021-01-21 07:10:05,313 epoch 14 - iter 3808/4766 - loss 0.15073272 - samples/sec: 8.34 - lr: 0.000001
|
790 |
+
2021-01-21 07:13:52,950 epoch 14 - iter 4284/4766 - loss 0.14982179 - samples/sec: 8.36 - lr: 0.000001
|
791 |
+
2021-01-21 07:17:41,726 epoch 14 - iter 4760/4766 - loss 0.14669553 - samples/sec: 8.32 - lr: 0.000001
|
792 |
+
2021-01-21 07:17:44,436 ----------------------------------------------------------------------------------------------------
|
793 |
+
2021-01-21 07:17:44,436 EPOCH 14 done: loss 0.1467 - lr 0.0000010
|
794 |
+
2021-01-21 07:17:44,436 BAD EPOCHS (no improvement): 4
|
795 |
+
2021-01-21 07:17:44,439 ----------------------------------------------------------------------------------------------------
|
796 |
+
2021-01-21 07:21:32,208 epoch 15 - iter 476/4766 - loss 0.15710687 - samples/sec: 8.36 - lr: 0.000001
|
797 |
+
2021-01-21 07:25:20,097 epoch 15 - iter 952/4766 - loss 0.15127131 - samples/sec: 8.36 - lr: 0.000001
|
798 |
+
2021-01-21 07:29:09,242 epoch 15 - iter 1428/4766 - loss 0.15385280 - samples/sec: 8.31 - lr: 0.000001
|
799 |
+
2021-01-21 07:32:56,645 epoch 15 - iter 1904/4766 - loss 0.15263483 - samples/sec: 8.37 - lr: 0.000001
|
800 |
+
2021-01-21 07:36:44,549 epoch 15 - iter 2380/4766 - loss 0.15494254 - samples/sec: 8.35 - lr: 0.000001
|
801 |
+
2021-01-21 07:40:31,861 epoch 15 - iter 2856/4766 - loss 0.14994557 - samples/sec: 8.38 - lr: 0.000001
|
802 |
+
2021-01-21 07:44:20,745 epoch 15 - iter 3332/4766 - loss 0.15018726 - samples/sec: 8.32 - lr: 0.000001
|
803 |
+
2021-01-21 07:48:07,710 epoch 15 - iter 3808/4766 - loss 0.14815315 - samples/sec: 8.39 - lr: 0.000001
|
804 |
+
2021-01-21 07:51:58,674 epoch 15 - iter 4284/4766 - loss 0.14728940 - samples/sec: 8.24 - lr: 0.000001
|
805 |
+
2021-01-21 07:55:50,263 epoch 15 - iter 4760/4766 - loss 0.14723711 - samples/sec: 8.22 - lr: 0.000001
|
806 |
+
2021-01-21 07:55:53,003 ----------------------------------------------------------------------------------------------------
|
807 |
+
2021-01-21 07:55:53,003 EPOCH 15 done: loss 0.1473 - lr 0.0000007
|
808 |
+
2021-01-21 07:55:53,003 BAD EPOCHS (no improvement): 4
|
809 |
+
2021-01-21 07:55:53,008 ----------------------------------------------------------------------------------------------------
|
810 |
+
2021-01-21 07:59:44,568 epoch 16 - iter 476/4766 - loss 0.13166130 - samples/sec: 8.22 - lr: 0.000001
|
811 |
+
2021-01-21 08:03:36,181 epoch 16 - iter 952/4766 - loss 0.14175737 - samples/sec: 8.22 - lr: 0.000001
|
812 |
+
2021-01-21 08:07:28,882 epoch 16 - iter 1428/4766 - loss 0.14304356 - samples/sec: 8.18 - lr: 0.000001
|
813 |
+
2021-01-21 08:11:20,434 epoch 16 - iter 1904/4766 - loss 0.14622200 - samples/sec: 8.22 - lr: 0.000001
|
814 |
+
2021-01-21 08:15:12,406 epoch 16 - iter 2380/4766 - loss 0.14768067 - samples/sec: 8.21 - lr: 0.000001
|
815 |
+
2021-01-21 08:19:04,996 epoch 16 - iter 2856/4766 - loss 0.14707410 - samples/sec: 8.19 - lr: 0.000001
|
816 |
+
2021-01-21 08:22:56,583 epoch 16 - iter 3332/4766 - loss 0.14688055 - samples/sec: 8.22 - lr: 0.000001
|
817 |
+
2021-01-21 08:27:15,003 epoch 16 - iter 3808/4766 - loss 0.14730450 - samples/sec: 7.37 - lr: 0.000001
|
818 |
+
2021-01-21 08:31:07,174 epoch 16 - iter 4284/4766 - loss 0.14827136 - samples/sec: 8.20 - lr: 0.000001
|
819 |
+
2021-01-21 08:34:59,482 epoch 16 - iter 4760/4766 - loss 0.14568427 - samples/sec: 8.20 - lr: 0.000000
|
820 |
+
2021-01-21 08:35:02,197 ----------------------------------------------------------------------------------------------------
|
821 |
+
2021-01-21 08:35:02,198 EPOCH 16 done: loss 0.1456 - lr 0.0000005
|
822 |
+
2021-01-21 08:35:02,198 BAD EPOCHS (no improvement): 4
|
823 |
+
2021-01-21 08:35:02,216 ----------------------------------------------------------------------------------------------------
|
824 |
+
2021-01-21 08:38:52,372 epoch 17 - iter 476/4766 - loss 0.12585091 - samples/sec: 8.27 - lr: 0.000000
|
825 |
+
2021-01-21 08:42:26,708 epoch 17 - iter 952/4766 - loss 0.13980769 - samples/sec: 8.88 - lr: 0.000000
|
826 |
+
2021-01-21 08:45:38,094 epoch 17 - iter 1428/4766 - loss 0.13790265 - samples/sec: 9.95 - lr: 0.000000
|
827 |
+
2021-01-21 08:48:48,648 epoch 17 - iter 1904/4766 - loss 0.13518588 - samples/sec: 9.99 - lr: 0.000000
|
828 |
+
2021-01-21 08:52:38,876 epoch 17 - iter 2380/4766 - loss 0.14102829 - samples/sec: 8.27 - lr: 0.000000
|
829 |
+
2021-01-21 08:58:28,052 epoch 17 - iter 2856/4766 - loss 0.13996114 - samples/sec: 5.45 - lr: 0.000000
|
830 |
+
2021-01-21 09:04:23,763 epoch 17 - iter 3332/4766 - loss 0.13826631 - samples/sec: 5.35 - lr: 0.000000
|
831 |
+
2021-01-21 09:07:47,606 epoch 17 - iter 3808/4766 - loss 0.13959091 - samples/sec: 9.34 - lr: 0.000000
|
832 |
+
2021-01-21 09:10:58,844 epoch 17 - iter 4284/4766 - loss 0.13834961 - samples/sec: 9.96 - lr: 0.000000
|
833 |
+
2021-01-21 09:14:07,816 epoch 17 - iter 4760/4766 - loss 0.14037759 - samples/sec: 10.08 - lr: 0.000000
|
834 |
+
2021-01-21 09:14:10,160 ----------------------------------------------------------------------------------------------------
|
835 |
+
2021-01-21 09:14:10,160 EPOCH 17 done: loss 0.1403 - lr 0.0000003
|
836 |
+
2021-01-21 09:14:10,160 BAD EPOCHS (no improvement): 4
|
837 |
+
2021-01-21 09:14:10,181 ----------------------------------------------------------------------------------------------------
|
838 |
+
2021-01-21 09:17:20,231 epoch 18 - iter 476/4766 - loss 0.13481177 - samples/sec: 10.02 - lr: 0.000000
|
839 |
+
2021-01-21 09:20:31,285 epoch 18 - iter 952/4766 - loss 0.12601264 - samples/sec: 9.97 - lr: 0.000000
|
840 |
+
2021-01-21 09:23:41,236 epoch 18 - iter 1428/4766 - loss 0.12608326 - samples/sec: 10.02 - lr: 0.000000
|
841 |
+
2021-01-21 09:26:51,839 epoch 18 - iter 1904/4766 - loss 0.13399083 - samples/sec: 9.99 - lr: 0.000000
|
842 |
+
2021-01-21 09:30:03,764 epoch 18 - iter 2380/4766 - loss 0.13876490 - samples/sec: 9.92 - lr: 0.000000
|
843 |
+
2021-01-21 09:33:15,574 epoch 18 - iter 2856/4766 - loss 0.13878700 - samples/sec: 9.93 - lr: 0.000000
|
844 |
+
2021-01-21 09:36:26,971 epoch 18 - iter 3332/4766 - loss 0.14409246 - samples/sec: 9.95 - lr: 0.000000
|
845 |
+
2021-01-21 09:39:37,934 epoch 18 - iter 3808/4766 - loss 0.14454244 - samples/sec: 9.97 - lr: 0.000000
|
846 |
+
2021-01-21 09:42:48,260 epoch 18 - iter 4284/4766 - loss 0.14386075 - samples/sec: 10.00 - lr: 0.000000
|
847 |
+
2021-01-21 09:45:58,345 epoch 18 - iter 4760/4766 - loss 0.14489400 - samples/sec: 10.02 - lr: 0.000000
|
848 |
+
2021-01-21 09:46:00,567 ----------------------------------------------------------------------------------------------------
|
849 |
+
2021-01-21 09:46:00,567 EPOCH 18 done: loss 0.1448 - lr 0.0000001
|
850 |
+
2021-01-21 09:46:00,567 BAD EPOCHS (no improvement): 4
|
851 |
+
2021-01-21 09:46:00,570 ----------------------------------------------------------------------------------------------------
|
852 |
+
2021-01-21 09:49:13,016 epoch 19 - iter 476/4766 - loss 0.16550822 - samples/sec: 9.89 - lr: 0.000000
|
853 |
+
2021-01-21 09:52:27,091 epoch 19 - iter 952/4766 - loss 0.13214122 - samples/sec: 9.81 - lr: 0.000000
|
854 |
+
2021-01-21 09:55:42,085 epoch 19 - iter 1428/4766 - loss 0.13831234 - samples/sec: 9.77 - lr: 0.000000
|
855 |
+
2021-01-21 09:58:56,680 epoch 19 - iter 1904/4766 - loss 0.13832571 - samples/sec: 9.79 - lr: 0.000000
|
856 |
+
2021-01-21 10:02:12,350 epoch 19 - iter 2380/4766 - loss 0.13808449 - samples/sec: 9.73 - lr: 0.000000
|
857 |
+
2021-01-21 10:05:26,205 epoch 19 - iter 2856/4766 - loss 0.13753814 - samples/sec: 9.82 - lr: 0.000000
|
858 |
+
2021-01-21 10:08:40,777 epoch 19 - iter 3332/4766 - loss 0.13826467 - samples/sec: 9.79 - lr: 0.000000
|
859 |
+
2021-01-21 10:11:55,648 epoch 19 - iter 3808/4766 - loss 0.14029889 - samples/sec: 9.77 - lr: 0.000000
|
860 |
+
2021-01-21 10:15:10,349 epoch 19 - iter 4284/4766 - loss 0.13696667 - samples/sec: 9.78 - lr: 0.000000
|
861 |
+
2021-01-21 10:18:24,777 epoch 19 - iter 4760/4766 - loss 0.13874853 - samples/sec: 9.79 - lr: 0.000000
|
862 |
+
2021-01-21 10:18:27,049 ----------------------------------------------------------------------------------------------------
|
863 |
+
2021-01-21 10:18:27,049 EPOCH 19 done: loss 0.1386 - lr 0.0000000
|
864 |
+
2021-01-21 10:18:27,049 BAD EPOCHS (no improvement): 4
|
865 |
+
2021-01-21 10:18:27,582 ----------------------------------------------------------------------------------------------------
|
866 |
+
2021-01-21 10:21:42,494 epoch 20 - iter 476/4766 - loss 0.11851291 - samples/sec: 9.77 - lr: 0.000000
|
867 |
+
2021-01-21 10:24:56,145 epoch 20 - iter 952/4766 - loss 0.13441288 - samples/sec: 9.83 - lr: 0.000000
|
868 |
+
2021-01-21 10:28:10,170 epoch 20 - iter 1428/4766 - loss 0.14083137 - samples/sec: 9.81 - lr: 0.000000
|
869 |
+
2021-01-21 10:31:25,784 epoch 20 - iter 1904/4766 - loss 0.14039091 - samples/sec: 9.73 - lr: 0.000000
|
870 |
+
2021-01-21 10:34:40,300 epoch 20 - iter 2380/4766 - loss 0.14164687 - samples/sec: 9.79 - lr: 0.000000
|
871 |
+
2021-01-21 10:37:54,324 epoch 20 - iter 2856/4766 - loss 0.13843665 - samples/sec: 9.81 - lr: 0.000000
|
872 |
+
2021-01-21 10:41:05,695 epoch 20 - iter 3332/4766 - loss 0.13902040 - samples/sec: 9.95 - lr: 0.000000
|
873 |
+
2021-01-21 10:44:16,299 epoch 20 - iter 3808/4766 - loss 0.13728566 - samples/sec: 9.99 - lr: 0.000000
|
874 |
+
2021-01-21 10:47:26,320 epoch 20 - iter 4284/4766 - loss 0.13661214 - samples/sec: 10.02 - lr: 0.000000
|
875 |
+
2021-01-21 10:50:35,967 epoch 20 - iter 4760/4766 - loss 0.13488013 - samples/sec: 10.04 - lr: 0.000000
|
876 |
+
2021-01-21 10:50:38,248 ----------------------------------------------------------------------------------------------------
|
877 |
+
2021-01-21 10:50:38,248 EPOCH 20 done: loss 0.1348 - lr 0.0000000
|
878 |
+
2021-01-21 10:50:38,248 BAD EPOCHS (no improvement): 4
|
879 |
+
2021-01-21 10:51:28,424 ----------------------------------------------------------------------------------------------------
|
880 |
+
2021-01-21 10:51:28,425 Testing using best model ...
|
881 |
+
2021-01-21 10:54:06,963 0.9530 0.9520 0.9525
|
882 |
+
2021-01-21 10:54:06,963
|
883 |
+
Results:
|
884 |
+
- F1-score (micro) 0.9525
|
885 |
+
- F1-score (macro) 0.9528
|
886 |
+
|
887 |
+
By class:
|
888 |
+
LOC tp: 751 - fp: 36 - fn: 23 - precision: 0.9543 - recall: 0.9703 - f1-score: 0.9622
|
889 |
+
MISC tp: 1095 - fp: 56 - fn: 92 - precision: 0.9513 - recall: 0.9225 - f1-score: 0.9367
|
890 |
+
ORG tp: 834 - fp: 59 - fn: 48 - precision: 0.9339 - recall: 0.9456 - f1-score: 0.9397
|
891 |
+
PER tp: 1072 - fp: 34 - fn: 26 - precision: 0.9693 - recall: 0.9763 - f1-score: 0.9728
|
892 |
+
2021-01-21 10:54:06,963 ----------------------------------------------------------------------------------------------------
|