initial commit
Browse files- README.md +173 -0
- loss.tsv +21 -0
- pytorch_model.bin +3 -0
- training.log +926 -0
README.md
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: en
|
7 |
+
datasets:
|
8 |
+
- ontonotes
|
9 |
+
inference: false
|
10 |
+
---
|
11 |
+
|
12 |
+
## English NER in Flair (Ontonotes large model)
|
13 |
+
|
14 |
+
This is the large 18-class NER model for English that ships with [Flair](https://github.com/flairNLP/flair/).
|
15 |
+
|
16 |
+
F1-Score: **90.93** (Ontonotes)
|
17 |
+
|
18 |
+
Predicts 18 tags:
|
19 |
+
|
20 |
+
| **tag** | **meaning** |
|
21 |
+
|---------------------------------|-----------|
|
22 |
+
| CARDINAL | cardinal value |
|
23 |
+
| DATE | date value |
|
24 |
+
| EVENT | event name |
|
25 |
+
| FAC | building name |
|
26 |
+
| GPE | geo-political entity |
|
27 |
+
| LANGUAGE | language name |
|
28 |
+
| LAW | law name |
|
29 |
+
| LOC | location name |
|
30 |
+
| MONEY | money name |
|
31 |
+
| NORP | affiliation |
|
32 |
+
| ORDINAL | ordinal value |
|
33 |
+
| ORG | organization name |
|
34 |
+
| PERCENT | percent value |
|
35 |
+
| PERSON | person name |
|
36 |
+
| PRODUCT | product name |
|
37 |
+
| QUANTITY | quantity value |
|
38 |
+
| TIME | time value |
|
39 |
+
| WORK_OF_ART | name of work of art |
|
40 |
+
|
41 |
+
Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF.
|
42 |
+
|
43 |
+
---
|
44 |
+
|
45 |
+
### Demo: How to use in Flair
|
46 |
+
|
47 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
48 |
+
|
49 |
+
```python
|
50 |
+
from flair.data import Sentence
|
51 |
+
from flair.models import SequenceTagger
|
52 |
+
|
53 |
+
# load tagger
|
54 |
+
tagger = SequenceTagger.load("flair/ner-english-ontonotes-large")
|
55 |
+
|
56 |
+
# make example sentence
|
57 |
+
sentence = Sentence("On September 1st George won 1 dollar while watching Game of Thrones.")
|
58 |
+
|
59 |
+
# predict NER tags
|
60 |
+
tagger.predict(sentence)
|
61 |
+
|
62 |
+
# print sentence
|
63 |
+
print(sentence)
|
64 |
+
|
65 |
+
# print predicted NER spans
|
66 |
+
print('The following NER tags are found:')
|
67 |
+
# iterate over entities and print
|
68 |
+
for entity in sentence.get_spans('ner'):
|
69 |
+
print(entity)
|
70 |
+
|
71 |
+
```
|
72 |
+
|
73 |
+
This yields the following output:
|
74 |
+
```
|
75 |
+
Span [2,3]: "September 1st" [− Labels: DATE (0.8824)]
|
76 |
+
Span [4,5]: "George Washington" [− Labels: PERSON (0.9604)]
|
77 |
+
Span [7,8]: "1 dollar" [− Labels: MONEY (0.9837)]
|
78 |
+
```
|
79 |
+
|
80 |
+
So, the entities "*September 1st*" (labeled as a **date**), "*George*" (labeled as a **person**), "*1 dollar*" (labeled as a **money**) and "Game of Thrones" (labeled as a **work of art**) are found in the sentence "*On September 1st George Washington won 1 dollar while watching Game of Thrones*".
|
81 |
+
|
82 |
+
|
83 |
+
---
|
84 |
+
|
85 |
+
### Training: Script to train this model
|
86 |
+
|
87 |
+
The following Flair script was used to train this model:
|
88 |
+
|
89 |
+
```python
|
90 |
+
from flair.data import Corpus
|
91 |
+
from flair.datasets import ColumnCorpus
|
92 |
+
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
|
93 |
+
|
94 |
+
# 1. load the corpus (Ontonotes does not ship with Flair, you need to download and reformat into a column format yourself)
|
95 |
+
corpus: Corpus = ColumnCorpus(
|
96 |
+
"resources/tasks/onto-ner",
|
97 |
+
column_format={0: "text", 1: "pos", 2: "upos", 3: "ner"},
|
98 |
+
tag_to_bioes="ner",
|
99 |
+
)
|
100 |
+
|
101 |
+
# 2. what tag do we want to predict?
|
102 |
+
tag_type = 'ner'
|
103 |
+
|
104 |
+
# 3. make the tag dictionary from the corpus
|
105 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
106 |
+
|
107 |
+
# 4. initialize fine-tuneable transformer embeddings WITH document context
|
108 |
+
from flair.embeddings import TransformerWordEmbeddings
|
109 |
+
|
110 |
+
embeddings = TransformerWordEmbeddings(
|
111 |
+
model='xlm-roberta-large',
|
112 |
+
layers="-1",
|
113 |
+
subtoken_pooling="first",
|
114 |
+
fine_tune=True,
|
115 |
+
use_context=True,
|
116 |
+
)
|
117 |
+
|
118 |
+
# 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
|
119 |
+
from flair.models import SequenceTagger
|
120 |
+
|
121 |
+
tagger = SequenceTagger(
|
122 |
+
hidden_size=256,
|
123 |
+
embeddings=embeddings,
|
124 |
+
tag_dictionary=tag_dictionary,
|
125 |
+
tag_type='ner',
|
126 |
+
use_crf=False,
|
127 |
+
use_rnn=False,
|
128 |
+
reproject_embeddings=False,
|
129 |
+
)
|
130 |
+
|
131 |
+
# 6. initialize trainer with AdamW optimizer
|
132 |
+
from flair.trainers import ModelTrainer
|
133 |
+
|
134 |
+
trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)
|
135 |
+
|
136 |
+
# 7. run training with XLM parameters (20 epochs, small LR)
|
137 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
138 |
+
|
139 |
+
trainer.train('resources/taggers/ner-english-ontonotes-large',
|
140 |
+
learning_rate=5.0e-6,
|
141 |
+
mini_batch_size=4,
|
142 |
+
mini_batch_chunk_size=1,
|
143 |
+
max_epochs=20,
|
144 |
+
scheduler=OneCycleLR,
|
145 |
+
embeddings_storage_mode='none',
|
146 |
+
weight_decay=0.,
|
147 |
+
)
|
148 |
+
```
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
---
|
153 |
+
|
154 |
+
### Cite
|
155 |
+
|
156 |
+
Please cite the following paper when using this model.
|
157 |
+
|
158 |
+
```
|
159 |
+
@misc{schweter2020flert,
|
160 |
+
title={FLERT: Document-Level Features for Named Entity Recognition},
|
161 |
+
author={Stefan Schweter and Alan Akbik},
|
162 |
+
year={2020},
|
163 |
+
eprint={2011.06993},
|
164 |
+
archivePrefix={arXiv},
|
165 |
+
primaryClass={cs.CL}
|
166 |
+
}
|
167 |
+
```
|
168 |
+
|
169 |
+
---
|
170 |
+
|
171 |
+
### Issues?
|
172 |
+
|
173 |
+
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
|
loss.tsv
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS TEST_LOSS TEST_PRECISION TEST_RECALL TEST_F1
|
2 |
+
1 14:37:34 4 0.0000 0.3262549467258948 0.12760598957538605 0.8458 0.8890 0.8669
|
3 |
+
2 17:12:47 4 0.0000 0.2804282291409521 0.08660610020160675 0.8796 0.9115 0.8953
|
4 |
+
3 19:48:06 4 0.0000 0.2564523208085152 0.08892939984798431 0.8919 0.9114 0.9015
|
5 |
+
4 22:23:24 4 0.0000 0.24018183809031893 0.09627319127321243 0.9060 0.9091 0.9076
|
6 |
+
5 00:58:50 4 0.0000 0.2262700294968986 0.09906419366598129 0.8960 0.9134 0.9046
|
7 |
+
6 03:34:15 4 0.0000 0.21600639542005087 0.10325756669044495 0.9001 0.9153 0.9076
|
8 |
+
7 06:09:34 4 0.0000 0.2105412023502746 0.11405058950185776 0.8979 0.9102 0.9040
|
9 |
+
8 08:45:06 4 0.0000 0.19886444720165738 0.12001997232437134 0.8965 0.9161 0.9062
|
10 |
+
9 11:20:26 4 0.0000 0.19246368803602384 0.12788806855678558 0.9026 0.9126 0.9075
|
11 |
+
10 13:55:29 4 0.0000 0.18462480832654865 0.14910565316677094 0.9055 0.9061 0.9058
|
12 |
+
11 16:30:17 4 0.0000 0.17900733027625026 0.15147249400615692 0.9002 0.9123 0.9062
|
13 |
+
12 19:05:31 4 0.0000 0.17210372630038878 0.147916778922081 0.9037 0.9134 0.9085
|
14 |
+
13 21:40:34 4 0.0000 0.17393692914703035 0.16395367681980133 0.9027 0.9127 0.9076
|
15 |
+
14 00:15:21 4 0.0000 0.17225090862075376 0.16743017733097076 0.9061 0.9119 0.9090
|
16 |
+
15 02:50:08 4 0.0000 0.16488957710656618 0.17295649647712708 0.9055 0.9146 0.9101
|
17 |
+
16 05:24:59 4 0.0000 0.16308925027911492 0.1732577085494995 0.9065 0.9134 0.9099
|
18 |
+
17 07:59:36 4 0.0000 0.1624136931469783 0.1792287975549698 0.9060 0.9137 0.9098
|
19 |
+
18 10:34:48 4 0.0000 0.16103925064710428 0.17890706658363342 0.9051 0.9139 0.9095
|
20 |
+
19 13:09:51 4 0.0000 0.16130805570335532 0.1799449324607849 0.9053 0.9134 0.9093
|
21 |
+
20 15:44:48 4 0.0000 0.1607274828808972 0.17999354004859924 0.9055 0.9132 0.9093
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:93ccd06d32bae9fde24d34cd86d81d0aa687c42dd531a0e7cf4b8d81c6eefc71
|
3 |
+
size 2240097289
|
training.log
ADDED
@@ -0,0 +1,926 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2021-02-20 12:03:00,991 ----------------------------------------------------------------------------------------------------
|
2 |
+
2021-02-20 12:03:00,994 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): XLMRobertaModel(
|
5 |
+
(embeddings): RobertaEmbeddings(
|
6 |
+
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
|
7 |
+
(position_embeddings): Embedding(514, 1024, padding_idx=1)
|
8 |
+
(token_type_embeddings): Embedding(1, 1024)
|
9 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): RobertaEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0): RobertaLayer(
|
15 |
+
(attention): RobertaAttention(
|
16 |
+
(self): RobertaSelfAttention(
|
17 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
18 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
19 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): RobertaSelfOutput(
|
23 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): RobertaIntermediate(
|
29 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
30 |
+
)
|
31 |
+
(output): RobertaOutput(
|
32 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
33 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
34 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
35 |
+
)
|
36 |
+
)
|
37 |
+
(1): RobertaLayer(
|
38 |
+
(attention): RobertaAttention(
|
39 |
+
(self): RobertaSelfAttention(
|
40 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
41 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
42 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
44 |
+
)
|
45 |
+
(output): RobertaSelfOutput(
|
46 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
47 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
48 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
49 |
+
)
|
50 |
+
)
|
51 |
+
(intermediate): RobertaIntermediate(
|
52 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
53 |
+
)
|
54 |
+
(output): RobertaOutput(
|
55 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
56 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
57 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
58 |
+
)
|
59 |
+
)
|
60 |
+
(2): RobertaLayer(
|
61 |
+
(attention): RobertaAttention(
|
62 |
+
(self): RobertaSelfAttention(
|
63 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
64 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
65 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
67 |
+
)
|
68 |
+
(output): RobertaSelfOutput(
|
69 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
70 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
71 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
72 |
+
)
|
73 |
+
)
|
74 |
+
(intermediate): RobertaIntermediate(
|
75 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
76 |
+
)
|
77 |
+
(output): RobertaOutput(
|
78 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
79 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
80 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
81 |
+
)
|
82 |
+
)
|
83 |
+
(3): RobertaLayer(
|
84 |
+
(attention): RobertaAttention(
|
85 |
+
(self): RobertaSelfAttention(
|
86 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
87 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
88 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
90 |
+
)
|
91 |
+
(output): RobertaSelfOutput(
|
92 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
93 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
95 |
+
)
|
96 |
+
)
|
97 |
+
(intermediate): RobertaIntermediate(
|
98 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
99 |
+
)
|
100 |
+
(output): RobertaOutput(
|
101 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
102 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
103 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
104 |
+
)
|
105 |
+
)
|
106 |
+
(4): RobertaLayer(
|
107 |
+
(attention): RobertaAttention(
|
108 |
+
(self): RobertaSelfAttention(
|
109 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
110 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
111 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
112 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
113 |
+
)
|
114 |
+
(output): RobertaSelfOutput(
|
115 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
116 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
117 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
118 |
+
)
|
119 |
+
)
|
120 |
+
(intermediate): RobertaIntermediate(
|
121 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
122 |
+
)
|
123 |
+
(output): RobertaOutput(
|
124 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
125 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
126 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
127 |
+
)
|
128 |
+
)
|
129 |
+
(5): RobertaLayer(
|
130 |
+
(attention): RobertaAttention(
|
131 |
+
(self): RobertaSelfAttention(
|
132 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
133 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
134 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
135 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
136 |
+
)
|
137 |
+
(output): RobertaSelfOutput(
|
138 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
139 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
141 |
+
)
|
142 |
+
)
|
143 |
+
(intermediate): RobertaIntermediate(
|
144 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
145 |
+
)
|
146 |
+
(output): RobertaOutput(
|
147 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
148 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
149 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
150 |
+
)
|
151 |
+
)
|
152 |
+
(6): RobertaLayer(
|
153 |
+
(attention): RobertaAttention(
|
154 |
+
(self): RobertaSelfAttention(
|
155 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
156 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
157 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
158 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
159 |
+
)
|
160 |
+
(output): RobertaSelfOutput(
|
161 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
162 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
163 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
164 |
+
)
|
165 |
+
)
|
166 |
+
(intermediate): RobertaIntermediate(
|
167 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
168 |
+
)
|
169 |
+
(output): RobertaOutput(
|
170 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
171 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
172 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
173 |
+
)
|
174 |
+
)
|
175 |
+
(7): RobertaLayer(
|
176 |
+
(attention): RobertaAttention(
|
177 |
+
(self): RobertaSelfAttention(
|
178 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
179 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
180 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
181 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
182 |
+
)
|
183 |
+
(output): RobertaSelfOutput(
|
184 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
185 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
186 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
187 |
+
)
|
188 |
+
)
|
189 |
+
(intermediate): RobertaIntermediate(
|
190 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
191 |
+
)
|
192 |
+
(output): RobertaOutput(
|
193 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
194 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
195 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
196 |
+
)
|
197 |
+
)
|
198 |
+
(8): RobertaLayer(
|
199 |
+
(attention): RobertaAttention(
|
200 |
+
(self): RobertaSelfAttention(
|
201 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
202 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
203 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
204 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
205 |
+
)
|
206 |
+
(output): RobertaSelfOutput(
|
207 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
208 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
209 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
210 |
+
)
|
211 |
+
)
|
212 |
+
(intermediate): RobertaIntermediate(
|
213 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
214 |
+
)
|
215 |
+
(output): RobertaOutput(
|
216 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
217 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
218 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(9): RobertaLayer(
|
222 |
+
(attention): RobertaAttention(
|
223 |
+
(self): RobertaSelfAttention(
|
224 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
225 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
226 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
228 |
+
)
|
229 |
+
(output): RobertaSelfOutput(
|
230 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
231 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
232 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
(intermediate): RobertaIntermediate(
|
236 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
237 |
+
)
|
238 |
+
(output): RobertaOutput(
|
239 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
240 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
242 |
+
)
|
243 |
+
)
|
244 |
+
(10): RobertaLayer(
|
245 |
+
(attention): RobertaAttention(
|
246 |
+
(self): RobertaSelfAttention(
|
247 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
248 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
249 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
250 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
251 |
+
)
|
252 |
+
(output): RobertaSelfOutput(
|
253 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
254 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
255 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
256 |
+
)
|
257 |
+
)
|
258 |
+
(intermediate): RobertaIntermediate(
|
259 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
260 |
+
)
|
261 |
+
(output): RobertaOutput(
|
262 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
263 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
264 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
265 |
+
)
|
266 |
+
)
|
267 |
+
(11): RobertaLayer(
|
268 |
+
(attention): RobertaAttention(
|
269 |
+
(self): RobertaSelfAttention(
|
270 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
271 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
272 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
273 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
274 |
+
)
|
275 |
+
(output): RobertaSelfOutput(
|
276 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
277 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
278 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
279 |
+
)
|
280 |
+
)
|
281 |
+
(intermediate): RobertaIntermediate(
|
282 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
283 |
+
)
|
284 |
+
(output): RobertaOutput(
|
285 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
286 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
287 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
288 |
+
)
|
289 |
+
)
|
290 |
+
(12): RobertaLayer(
|
291 |
+
(attention): RobertaAttention(
|
292 |
+
(self): RobertaSelfAttention(
|
293 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
294 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
295 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
296 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
297 |
+
)
|
298 |
+
(output): RobertaSelfOutput(
|
299 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
300 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
301 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
302 |
+
)
|
303 |
+
)
|
304 |
+
(intermediate): RobertaIntermediate(
|
305 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
306 |
+
)
|
307 |
+
(output): RobertaOutput(
|
308 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
309 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
310 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
311 |
+
)
|
312 |
+
)
|
313 |
+
(13): RobertaLayer(
|
314 |
+
(attention): RobertaAttention(
|
315 |
+
(self): RobertaSelfAttention(
|
316 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
317 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
318 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
319 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
320 |
+
)
|
321 |
+
(output): RobertaSelfOutput(
|
322 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
323 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
324 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
325 |
+
)
|
326 |
+
)
|
327 |
+
(intermediate): RobertaIntermediate(
|
328 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
329 |
+
)
|
330 |
+
(output): RobertaOutput(
|
331 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
332 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
333 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
334 |
+
)
|
335 |
+
)
|
336 |
+
(14): RobertaLayer(
|
337 |
+
(attention): RobertaAttention(
|
338 |
+
(self): RobertaSelfAttention(
|
339 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
340 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
341 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
342 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
343 |
+
)
|
344 |
+
(output): RobertaSelfOutput(
|
345 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
346 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
347 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
348 |
+
)
|
349 |
+
)
|
350 |
+
(intermediate): RobertaIntermediate(
|
351 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
352 |
+
)
|
353 |
+
(output): RobertaOutput(
|
354 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
355 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
356 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
357 |
+
)
|
358 |
+
)
|
359 |
+
(15): RobertaLayer(
|
360 |
+
(attention): RobertaAttention(
|
361 |
+
(self): RobertaSelfAttention(
|
362 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
363 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
364 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
365 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
366 |
+
)
|
367 |
+
(output): RobertaSelfOutput(
|
368 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
369 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
370 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
371 |
+
)
|
372 |
+
)
|
373 |
+
(intermediate): RobertaIntermediate(
|
374 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
375 |
+
)
|
376 |
+
(output): RobertaOutput(
|
377 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
378 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
379 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
380 |
+
)
|
381 |
+
)
|
382 |
+
(16): RobertaLayer(
|
383 |
+
(attention): RobertaAttention(
|
384 |
+
(self): RobertaSelfAttention(
|
385 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
386 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
387 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
388 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
389 |
+
)
|
390 |
+
(output): RobertaSelfOutput(
|
391 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
392 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
393 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
394 |
+
)
|
395 |
+
)
|
396 |
+
(intermediate): RobertaIntermediate(
|
397 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
398 |
+
)
|
399 |
+
(output): RobertaOutput(
|
400 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
401 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
402 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
403 |
+
)
|
404 |
+
)
|
405 |
+
(17): RobertaLayer(
|
406 |
+
(attention): RobertaAttention(
|
407 |
+
(self): RobertaSelfAttention(
|
408 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
409 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
410 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
411 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
412 |
+
)
|
413 |
+
(output): RobertaSelfOutput(
|
414 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
415 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
416 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
417 |
+
)
|
418 |
+
)
|
419 |
+
(intermediate): RobertaIntermediate(
|
420 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
421 |
+
)
|
422 |
+
(output): RobertaOutput(
|
423 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
424 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
425 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
426 |
+
)
|
427 |
+
)
|
428 |
+
(18): RobertaLayer(
|
429 |
+
(attention): RobertaAttention(
|
430 |
+
(self): RobertaSelfAttention(
|
431 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
432 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
433 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
434 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
435 |
+
)
|
436 |
+
(output): RobertaSelfOutput(
|
437 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
438 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
439 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
440 |
+
)
|
441 |
+
)
|
442 |
+
(intermediate): RobertaIntermediate(
|
443 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
444 |
+
)
|
445 |
+
(output): RobertaOutput(
|
446 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
447 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
448 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
449 |
+
)
|
450 |
+
)
|
451 |
+
(19): RobertaLayer(
|
452 |
+
(attention): RobertaAttention(
|
453 |
+
(self): RobertaSelfAttention(
|
454 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
455 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
456 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
457 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
458 |
+
)
|
459 |
+
(output): RobertaSelfOutput(
|
460 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
461 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
462 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
463 |
+
)
|
464 |
+
)
|
465 |
+
(intermediate): RobertaIntermediate(
|
466 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
467 |
+
)
|
468 |
+
(output): RobertaOutput(
|
469 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
470 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
471 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
472 |
+
)
|
473 |
+
)
|
474 |
+
(20): RobertaLayer(
|
475 |
+
(attention): RobertaAttention(
|
476 |
+
(self): RobertaSelfAttention(
|
477 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
478 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
479 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
480 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
481 |
+
)
|
482 |
+
(output): RobertaSelfOutput(
|
483 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
484 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
485 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
486 |
+
)
|
487 |
+
)
|
488 |
+
(intermediate): RobertaIntermediate(
|
489 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
490 |
+
)
|
491 |
+
(output): RobertaOutput(
|
492 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
493 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
494 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
495 |
+
)
|
496 |
+
)
|
497 |
+
(21): RobertaLayer(
|
498 |
+
(attention): RobertaAttention(
|
499 |
+
(self): RobertaSelfAttention(
|
500 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
501 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
502 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
503 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
504 |
+
)
|
505 |
+
(output): RobertaSelfOutput(
|
506 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
507 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
508 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
509 |
+
)
|
510 |
+
)
|
511 |
+
(intermediate): RobertaIntermediate(
|
512 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
513 |
+
)
|
514 |
+
(output): RobertaOutput(
|
515 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
516 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
517 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
518 |
+
)
|
519 |
+
)
|
520 |
+
(22): RobertaLayer(
|
521 |
+
(attention): RobertaAttention(
|
522 |
+
(self): RobertaSelfAttention(
|
523 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
524 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
525 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
526 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
527 |
+
)
|
528 |
+
(output): RobertaSelfOutput(
|
529 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
530 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
531 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
532 |
+
)
|
533 |
+
)
|
534 |
+
(intermediate): RobertaIntermediate(
|
535 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
536 |
+
)
|
537 |
+
(output): RobertaOutput(
|
538 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
539 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
540 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
541 |
+
)
|
542 |
+
)
|
543 |
+
(23): RobertaLayer(
|
544 |
+
(attention): RobertaAttention(
|
545 |
+
(self): RobertaSelfAttention(
|
546 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
547 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
548 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
549 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
550 |
+
)
|
551 |
+
(output): RobertaSelfOutput(
|
552 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
553 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
554 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
555 |
+
)
|
556 |
+
)
|
557 |
+
(intermediate): RobertaIntermediate(
|
558 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
559 |
+
)
|
560 |
+
(output): RobertaOutput(
|
561 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
562 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
563 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
564 |
+
)
|
565 |
+
)
|
566 |
+
)
|
567 |
+
)
|
568 |
+
(pooler): RobertaPooler(
|
569 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
570 |
+
(activation): Tanh()
|
571 |
+
)
|
572 |
+
)
|
573 |
+
)
|
574 |
+
(word_dropout): WordDropout(p=0.05)
|
575 |
+
(locked_dropout): LockedDropout(p=0.5)
|
576 |
+
(linear): Linear(in_features=1024, out_features=76, bias=True)
|
577 |
+
(beta): 1.0
|
578 |
+
(weights): None
|
579 |
+
(weight_tensor) None
|
580 |
+
)"
|
581 |
+
2021-02-20 12:03:00,995 ----------------------------------------------------------------------------------------------------
|
582 |
+
2021-02-20 12:03:00,995 Corpus: "Corpus: 75187 train + 9603 dev + 9479 test sentences"
|
583 |
+
2021-02-20 12:03:00,995 ----------------------------------------------------------------------------------------------------
|
584 |
+
2021-02-20 12:03:00,995 Parameters:
|
585 |
+
2021-02-20 12:03:00,995 - learning_rate: "5e-06"
|
586 |
+
2021-02-20 12:03:00,995 - mini_batch_size: "4"
|
587 |
+
2021-02-20 12:03:00,995 - patience: "3"
|
588 |
+
2021-02-20 12:03:00,995 - anneal_factor: "0.5"
|
589 |
+
2021-02-20 12:03:00,995 - max_epochs: "20"
|
590 |
+
2021-02-20 12:03:00,995 - shuffle: "True"
|
591 |
+
2021-02-20 12:03:00,995 - train_with_dev: "True"
|
592 |
+
2021-02-20 12:03:00,996 - batch_growth_annealing: "False"
|
593 |
+
2021-02-20 12:03:00,996 ----------------------------------------------------------------------------------------------------
|
594 |
+
2021-02-20 12:03:00,996 Model training base path: "resources/contextdrop/d-flert-ontonotes-ft+dev-xlm-roberta-large-context+drop-64-True-42"
|
595 |
+
2021-02-20 12:03:00,996 ----------------------------------------------------------------------------------------------------
|
596 |
+
2021-02-20 12:03:00,996 Device: cuda:0
|
597 |
+
2021-02-20 12:03:00,996 ----------------------------------------------------------------------------------------------------
|
598 |
+
2021-02-20 12:03:00,996 Embeddings storage mode: none
|
599 |
+
2021-02-20 12:03:01,005 ----------------------------------------------------------------------------------------------------
|
600 |
+
2021-02-20 12:17:26,941 epoch 1 - iter 2119/21198 - loss 0.46498391 - samples/sec: 9.79 - lr: 0.000005
|
601 |
+
2021-02-20 12:32:25,501 epoch 1 - iter 4238/21198 - loss 0.43484389 - samples/sec: 9.43 - lr: 0.000005
|
602 |
+
2021-02-20 12:47:30,355 epoch 1 - iter 6357/21198 - loss 0.42857357 - samples/sec: 9.37 - lr: 0.000005
|
603 |
+
2021-02-20 13:02:33,037 epoch 1 - iter 8476/21198 - loss 0.40114081 - samples/sec: 9.39 - lr: 0.000005
|
604 |
+
2021-02-20 13:17:06,534 epoch 1 - iter 10595/21198 - loss 0.36551536 - samples/sec: 9.70 - lr: 0.000005
|
605 |
+
2021-02-20 13:31:52,079 epoch 1 - iter 12714/21198 - loss 0.34481658 - samples/sec: 9.57 - lr: 0.000005
|
606 |
+
2021-02-20 13:47:10,517 epoch 1 - iter 14833/21198 - loss 0.33967654 - samples/sec: 9.23 - lr: 0.000005
|
607 |
+
2021-02-20 14:02:14,283 epoch 1 - iter 16952/21198 - loss 0.33393062 - samples/sec: 9.38 - lr: 0.000005
|
608 |
+
2021-02-20 14:16:49,633 epoch 1 - iter 19071/21198 - loss 0.32924976 - samples/sec: 9.68 - lr: 0.000005
|
609 |
+
2021-02-20 14:31:45,192 epoch 1 - iter 21190/21198 - loss 0.32628298 - samples/sec: 9.47 - lr: 0.000005
|
610 |
+
2021-02-20 14:31:48,270 ----------------------------------------------------------------------------------------------------
|
611 |
+
2021-02-20 14:31:48,271 EPOCH 1 done: loss 0.3263 - lr 0.0000050
|
612 |
+
2021-02-20 14:37:34,463 TEST : loss 0.12760598957538605 - score 0.8669
|
613 |
+
2021-02-20 14:37:34,546 BAD EPOCHS (no improvement): 4
|
614 |
+
2021-02-20 14:37:34,556 ----------------------------------------------------------------------------------------------------
|
615 |
+
2021-02-20 14:52:29,571 epoch 2 - iter 2119/21198 - loss 0.29859233 - samples/sec: 9.47 - lr: 0.000005
|
616 |
+
2021-02-20 15:07:24,765 epoch 2 - iter 4238/21198 - loss 0.29870475 - samples/sec: 9.47 - lr: 0.000005
|
617 |
+
2021-02-20 15:22:22,170 epoch 2 - iter 6357/21198 - loss 0.29288750 - samples/sec: 9.45 - lr: 0.000005
|
618 |
+
2021-02-20 15:37:18,156 epoch 2 - iter 8476/21198 - loss 0.29279330 - samples/sec: 9.46 - lr: 0.000005
|
619 |
+
2021-02-20 15:52:13,883 epoch 2 - iter 10595/21198 - loss 0.28788203 - samples/sec: 9.46 - lr: 0.000005
|
620 |
+
2021-02-20 16:07:12,097 epoch 2 - iter 12714/21198 - loss 0.28927318 - samples/sec: 9.44 - lr: 0.000005
|
621 |
+
2021-02-20 16:22:07,642 epoch 2 - iter 14833/21198 - loss 0.28514545 - samples/sec: 9.47 - lr: 0.000005
|
622 |
+
2021-02-20 16:37:06,266 epoch 2 - iter 16952/21198 - loss 0.28311760 - samples/sec: 9.43 - lr: 0.000005
|
623 |
+
2021-02-20 16:52:00,498 epoch 2 - iter 19071/21198 - loss 0.28229767 - samples/sec: 9.48 - lr: 0.000005
|
624 |
+
2021-02-20 17:06:54,963 epoch 2 - iter 21190/21198 - loss 0.28044944 - samples/sec: 9.48 - lr: 0.000005
|
625 |
+
2021-02-20 17:06:58,266 ----------------------------------------------------------------------------------------------------
|
626 |
+
2021-02-20 17:06:58,266 EPOCH 2 done: loss 0.2804 - lr 0.0000049
|
627 |
+
2021-02-20 17:12:47,188 TEST : loss 0.08660610020160675 - score 0.8953
|
628 |
+
2021-02-20 17:12:47,273 BAD EPOCHS (no improvement): 4
|
629 |
+
2021-02-20 17:12:47,275 ----------------------------------------------------------------------------------------------------
|
630 |
+
2021-02-20 17:27:41,889 epoch 3 - iter 2119/21198 - loss 0.26828308 - samples/sec: 9.48 - lr: 0.000005
|
631 |
+
2021-02-20 17:42:34,288 epoch 3 - iter 4238/21198 - loss 0.26184351 - samples/sec: 9.50 - lr: 0.000005
|
632 |
+
2021-02-20 17:57:29,878 epoch 3 - iter 6357/21198 - loss 0.25940653 - samples/sec: 9.46 - lr: 0.000005
|
633 |
+
2021-02-20 18:12:25,470 epoch 3 - iter 8476/21198 - loss 0.25828841 - samples/sec: 9.46 - lr: 0.000005
|
634 |
+
2021-02-20 18:27:24,608 epoch 3 - iter 10595/21198 - loss 0.25551183 - samples/sec: 9.43 - lr: 0.000005
|
635 |
+
2021-02-20 18:42:18,429 epoch 3 - iter 12714/21198 - loss 0.25481692 - samples/sec: 9.48 - lr: 0.000005
|
636 |
+
2021-02-20 18:57:16,717 epoch 3 - iter 14833/21198 - loss 0.25506844 - samples/sec: 9.44 - lr: 0.000005
|
637 |
+
2021-02-20 19:12:13,807 epoch 3 - iter 16952/21198 - loss 0.25407433 - samples/sec: 9.45 - lr: 0.000005
|
638 |
+
2021-02-20 19:27:12,592 epoch 3 - iter 19071/21198 - loss 0.25575351 - samples/sec: 9.43 - lr: 0.000005
|
639 |
+
2021-02-20 19:42:07,912 epoch 3 - iter 21190/21198 - loss 0.25645391 - samples/sec: 9.47 - lr: 0.000005
|
640 |
+
2021-02-20 19:42:10,991 ----------------------------------------------------------------------------------------------------
|
641 |
+
2021-02-20 19:42:10,991 EPOCH 3 done: loss 0.2565 - lr 0.0000047
|
642 |
+
2021-02-20 19:48:05,928 TEST : loss 0.08892939984798431 - score 0.9015
|
643 |
+
2021-02-20 19:48:06,017 BAD EPOCHS (no improvement): 4
|
644 |
+
2021-02-20 19:48:06,022 ----------------------------------------------------------------------------------------------------
|
645 |
+
2021-02-20 20:03:04,520 epoch 4 - iter 2119/21198 - loss 0.24164433 - samples/sec: 9.43 - lr: 0.000005
|
646 |
+
2021-02-20 20:17:56,429 epoch 4 - iter 4238/21198 - loss 0.24019658 - samples/sec: 9.50 - lr: 0.000005
|
647 |
+
2021-02-20 20:32:52,945 epoch 4 - iter 6357/21198 - loss 0.24219914 - samples/sec: 9.46 - lr: 0.000005
|
648 |
+
2021-02-20 20:47:50,199 epoch 4 - iter 8476/21198 - loss 0.23953211 - samples/sec: 9.45 - lr: 0.000005
|
649 |
+
2021-02-20 21:02:44,855 epoch 4 - iter 10595/21198 - loss 0.23751325 - samples/sec: 9.47 - lr: 0.000005
|
650 |
+
2021-02-20 21:17:41,522 epoch 4 - iter 12714/21198 - loss 0.23782852 - samples/sec: 9.45 - lr: 0.000005
|
651 |
+
2021-02-20 21:32:38,226 epoch 4 - iter 14833/21198 - loss 0.24096846 - samples/sec: 9.45 - lr: 0.000005
|
652 |
+
2021-02-20 21:47:40,951 epoch 4 - iter 16952/21198 - loss 0.23932344 - samples/sec: 9.39 - lr: 0.000005
|
653 |
+
2021-02-20 22:02:36,247 epoch 4 - iter 19071/21198 - loss 0.24064527 - samples/sec: 9.47 - lr: 0.000005
|
654 |
+
2021-02-20 22:17:29,253 epoch 4 - iter 21190/21198 - loss 0.24016898 - samples/sec: 9.49 - lr: 0.000005
|
655 |
+
2021-02-20 22:17:32,358 ----------------------------------------------------------------------------------------------------
|
656 |
+
2021-02-20 22:17:32,358 EPOCH 4 done: loss 0.2402 - lr 0.0000045
|
657 |
+
2021-02-20 22:23:24,429 TEST : loss 0.09627319127321243 - score 0.9076
|
658 |
+
2021-02-20 22:23:24,520 BAD EPOCHS (no improvement): 4
|
659 |
+
2021-02-20 22:23:24,535 ----------------------------------------------------------------------------------------------------
|
660 |
+
2021-02-20 22:38:20,470 epoch 5 - iter 2119/21198 - loss 0.22083609 - samples/sec: 9.46 - lr: 0.000004
|
661 |
+
2021-02-20 22:53:16,946 epoch 5 - iter 4238/21198 - loss 0.22353303 - samples/sec: 9.46 - lr: 0.000004
|
662 |
+
2021-02-20 23:08:09,262 epoch 5 - iter 6357/21198 - loss 0.22526515 - samples/sec: 9.50 - lr: 0.000004
|
663 |
+
2021-02-20 23:23:05,354 epoch 5 - iter 8476/21198 - loss 0.22450491 - samples/sec: 9.46 - lr: 0.000004
|
664 |
+
2021-02-20 23:38:01,961 epoch 5 - iter 10595/21198 - loss 0.22317870 - samples/sec: 9.45 - lr: 0.000004
|
665 |
+
2021-02-20 23:53:00,849 epoch 5 - iter 12714/21198 - loss 0.22493520 - samples/sec: 9.43 - lr: 0.000004
|
666 |
+
2021-02-21 00:07:59,228 epoch 5 - iter 14833/21198 - loss 0.22554395 - samples/sec: 9.44 - lr: 0.000004
|
667 |
+
2021-02-21 00:22:55,492 epoch 5 - iter 16952/21198 - loss 0.22640472 - samples/sec: 9.46 - lr: 0.000004
|
668 |
+
2021-02-21 00:37:51,438 epoch 5 - iter 19071/21198 - loss 0.22662263 - samples/sec: 9.46 - lr: 0.000004
|
669 |
+
2021-02-21 00:52:55,596 epoch 5 - iter 21190/21198 - loss 0.22627673 - samples/sec: 9.38 - lr: 0.000004
|
670 |
+
2021-02-21 00:52:58,870 ----------------------------------------------------------------------------------------------------
|
671 |
+
2021-02-21 00:52:58,870 EPOCH 5 done: loss 0.2263 - lr 0.0000043
|
672 |
+
2021-02-21 00:58:49,962 TEST : loss 0.09906419366598129 - score 0.9046
|
673 |
+
2021-02-21 00:58:50,051 BAD EPOCHS (no improvement): 4
|
674 |
+
2021-02-21 00:58:50,053 ----------------------------------------------------------------------------------------------------
|
675 |
+
2021-02-21 01:13:45,979 epoch 6 - iter 2119/21198 - loss 0.21128728 - samples/sec: 9.46 - lr: 0.000004
|
676 |
+
2021-02-21 01:28:42,436 epoch 6 - iter 4238/21198 - loss 0.21192698 - samples/sec: 9.46 - lr: 0.000004
|
677 |
+
2021-02-21 01:43:40,811 epoch 6 - iter 6357/21198 - loss 0.21388017 - samples/sec: 9.44 - lr: 0.000004
|
678 |
+
2021-02-21 01:58:32,902 epoch 6 - iter 8476/21198 - loss 0.21433303 - samples/sec: 9.50 - lr: 0.000004
|
679 |
+
2021-02-21 02:13:28,053 epoch 6 - iter 10595/21198 - loss 0.21527260 - samples/sec: 9.47 - lr: 0.000004
|
680 |
+
2021-02-21 02:28:23,770 epoch 6 - iter 12714/21198 - loss 0.21578637 - samples/sec: 9.46 - lr: 0.000004
|
681 |
+
2021-02-21 02:43:23,477 epoch 6 - iter 14833/21198 - loss 0.21742266 - samples/sec: 9.42 - lr: 0.000004
|
682 |
+
2021-02-21 02:58:20,917 epoch 6 - iter 16952/21198 - loss 0.21671573 - samples/sec: 9.45 - lr: 0.000004
|
683 |
+
2021-02-21 03:13:22,283 epoch 6 - iter 19071/21198 - loss 0.21638606 - samples/sec: 9.40 - lr: 0.000004
|
684 |
+
2021-02-21 03:28:18,668 epoch 6 - iter 21190/21198 - loss 0.21601016 - samples/sec: 9.46 - lr: 0.000004
|
685 |
+
2021-02-21 03:28:21,833 ----------------------------------------------------------------------------------------------------
|
686 |
+
2021-02-21 03:28:21,833 EPOCH 6 done: loss 0.2160 - lr 0.0000040
|
687 |
+
2021-02-21 03:34:15,000 TEST : loss 0.10325756669044495 - score 0.9076
|
688 |
+
2021-02-21 03:34:15,094 BAD EPOCHS (no improvement): 4
|
689 |
+
2021-02-21 03:34:15,120 ----------------------------------------------------------------------------------------------------
|
690 |
+
2021-02-21 03:49:07,155 epoch 7 - iter 2119/21198 - loss 0.21960439 - samples/sec: 9.50 - lr: 0.000004
|
691 |
+
2021-02-21 04:04:03,005 epoch 7 - iter 4238/21198 - loss 0.22004925 - samples/sec: 9.46 - lr: 0.000004
|
692 |
+
2021-02-21 04:18:56,753 epoch 7 - iter 6357/21198 - loss 0.21543406 - samples/sec: 9.48 - lr: 0.000004
|
693 |
+
2021-02-21 04:33:52,219 epoch 7 - iter 8476/21198 - loss 0.21504576 - samples/sec: 9.47 - lr: 0.000004
|
694 |
+
2021-02-21 04:48:46,766 epoch 7 - iter 10595/21198 - loss 0.21323903 - samples/sec: 9.48 - lr: 0.000004
|
695 |
+
2021-02-21 05:03:47,214 epoch 7 - iter 12714/21198 - loss 0.21486108 - samples/sec: 9.41 - lr: 0.000004
|
696 |
+
2021-02-21 05:18:42,062 epoch 7 - iter 14833/21198 - loss 0.21180056 - samples/sec: 9.47 - lr: 0.000004
|
697 |
+
2021-02-21 05:33:36,547 epoch 7 - iter 16952/21198 - loss 0.21059053 - samples/sec: 9.48 - lr: 0.000004
|
698 |
+
2021-02-21 05:48:34,692 epoch 7 - iter 19071/21198 - loss 0.21256070 - samples/sec: 9.44 - lr: 0.000004
|
699 |
+
2021-02-21 06:03:32,420 epoch 7 - iter 21190/21198 - loss 0.21049512 - samples/sec: 9.44 - lr: 0.000004
|
700 |
+
2021-02-21 06:03:35,617 ----------------------------------------------------------------------------------------------------
|
701 |
+
2021-02-21 06:03:35,617 EPOCH 7 done: loss 0.2105 - lr 0.0000036
|
702 |
+
2021-02-21 06:09:34,438 TEST : loss 0.11405058950185776 - score 0.904
|
703 |
+
2021-02-21 06:09:34,531 BAD EPOCHS (no improvement): 4
|
704 |
+
2021-02-21 06:09:34,562 ----------------------------------------------------------------------------------------------------
|
705 |
+
2021-02-21 06:24:28,495 epoch 8 - iter 2119/21198 - loss 0.20943523 - samples/sec: 9.48 - lr: 0.000004
|
706 |
+
2021-02-21 06:39:27,118 epoch 8 - iter 4238/21198 - loss 0.20855714 - samples/sec: 9.43 - lr: 0.000004
|
707 |
+
2021-02-21 06:54:21,524 epoch 8 - iter 6357/21198 - loss 0.20901557 - samples/sec: 9.48 - lr: 0.000004
|
708 |
+
2021-02-21 07:09:19,131 epoch 8 - iter 8476/21198 - loss 0.20346961 - samples/sec: 9.44 - lr: 0.000003
|
709 |
+
2021-02-21 07:24:13,963 epoch 8 - iter 10595/21198 - loss 0.20279742 - samples/sec: 9.47 - lr: 0.000003
|
710 |
+
2021-02-21 07:39:11,643 epoch 8 - iter 12714/21198 - loss 0.20257371 - samples/sec: 9.44 - lr: 0.000003
|
711 |
+
2021-02-21 07:54:11,363 epoch 8 - iter 14833/21198 - loss 0.19941560 - samples/sec: 9.42 - lr: 0.000003
|
712 |
+
2021-02-21 08:09:12,189 epoch 8 - iter 16952/21198 - loss 0.19895001 - samples/sec: 9.41 - lr: 0.000003
|
713 |
+
2021-02-21 08:24:10,631 epoch 8 - iter 19071/21198 - loss 0.19874614 - samples/sec: 9.43 - lr: 0.000003
|
714 |
+
2021-02-21 08:39:11,135 epoch 8 - iter 21190/21198 - loss 0.19883000 - samples/sec: 9.41 - lr: 0.000003
|
715 |
+
2021-02-21 08:39:14,364 ----------------------------------------------------------------------------------------------------
|
716 |
+
2021-02-21 08:39:14,365 EPOCH 8 done: loss 0.1989 - lr 0.0000033
|
717 |
+
2021-02-21 08:45:06,010 TEST : loss 0.12001997232437134 - score 0.9062
|
718 |
+
2021-02-21 08:45:06,104 BAD EPOCHS (no improvement): 4
|
719 |
+
2021-02-21 08:45:06,108 ----------------------------------------------------------------------------------------------------
|
720 |
+
2021-02-21 09:00:02,412 epoch 9 - iter 2119/21198 - loss 0.19438574 - samples/sec: 9.46 - lr: 0.000003
|
721 |
+
2021-02-21 09:15:05,242 epoch 9 - iter 4238/21198 - loss 0.18942482 - samples/sec: 9.39 - lr: 0.000003
|
722 |
+
2021-02-21 09:30:02,818 epoch 9 - iter 6357/21198 - loss 0.19236360 - samples/sec: 9.44 - lr: 0.000003
|
723 |
+
2021-02-21 09:44:58,840 epoch 9 - iter 8476/21198 - loss 0.19256963 - samples/sec: 9.46 - lr: 0.000003
|
724 |
+
2021-02-21 09:59:56,642 epoch 9 - iter 10595/21198 - loss 0.19253633 - samples/sec: 9.44 - lr: 0.000003
|
725 |
+
2021-02-21 10:14:53,595 epoch 9 - iter 12714/21198 - loss 0.19368548 - samples/sec: 9.45 - lr: 0.000003
|
726 |
+
2021-02-21 10:29:47,614 epoch 9 - iter 14833/21198 - loss 0.19452139 - samples/sec: 9.48 - lr: 0.000003
|
727 |
+
2021-02-21 10:44:41,415 epoch 9 - iter 16952/21198 - loss 0.19339405 - samples/sec: 9.48 - lr: 0.000003
|
728 |
+
2021-02-21 10:59:36,337 epoch 9 - iter 19071/21198 - loss 0.19242064 - samples/sec: 9.47 - lr: 0.000003
|
729 |
+
2021-02-21 11:14:30,614 epoch 9 - iter 21190/21198 - loss 0.19248543 - samples/sec: 9.48 - lr: 0.000003
|
730 |
+
2021-02-21 11:14:33,791 ----------------------------------------------------------------------------------------------------
|
731 |
+
2021-02-21 11:14:33,791 EPOCH 9 done: loss 0.1925 - lr 0.0000029
|
732 |
+
2021-02-21 11:20:25,946 TEST : loss 0.12788806855678558 - score 0.9075
|
733 |
+
2021-02-21 11:20:26,040 BAD EPOCHS (no improvement): 4
|
734 |
+
2021-02-21 11:20:26,059 ----------------------------------------------------------------------------------------------------
|
735 |
+
2021-02-21 11:35:18,369 epoch 10 - iter 2119/21198 - loss 0.19003716 - samples/sec: 9.50 - lr: 0.000003
|
736 |
+
2021-02-21 11:50:08,521 epoch 10 - iter 4238/21198 - loss 0.18305573 - samples/sec: 9.52 - lr: 0.000003
|
737 |
+
2021-02-21 12:05:00,626 epoch 10 - iter 6357/21198 - loss 0.18276790 - samples/sec: 9.50 - lr: 0.000003
|
738 |
+
2021-02-21 12:19:58,182 epoch 10 - iter 8476/21198 - loss 0.18408200 - samples/sec: 9.44 - lr: 0.000003
|
739 |
+
2021-02-21 12:34:51,607 epoch 10 - iter 10595/21198 - loss 0.18396061 - samples/sec: 9.49 - lr: 0.000003
|
740 |
+
2021-02-21 12:49:50,161 epoch 10 - iter 12714/21198 - loss 0.18350312 - samples/sec: 9.43 - lr: 0.000003
|
741 |
+
2021-02-21 13:04:45,147 epoch 10 - iter 14833/21198 - loss 0.18334288 - samples/sec: 9.47 - lr: 0.000003
|
742 |
+
2021-02-21 13:19:40,466 epoch 10 - iter 16952/21198 - loss 0.18425802 - samples/sec: 9.47 - lr: 0.000003
|
743 |
+
2021-02-21 13:34:36,952 epoch 10 - iter 19071/21198 - loss 0.18414841 - samples/sec: 9.46 - lr: 0.000003
|
744 |
+
2021-02-21 13:49:30,328 epoch 10 - iter 21190/21198 - loss 0.18456898 - samples/sec: 9.49 - lr: 0.000003
|
745 |
+
2021-02-21 13:49:33,450 ----------------------------------------------------------------------------------------------------
|
746 |
+
2021-02-21 13:49:33,450 EPOCH 10 done: loss 0.1846 - lr 0.0000025
|
747 |
+
2021-02-21 13:55:29,322 TEST : loss 0.14910565316677094 - score 0.9058
|
748 |
+
2021-02-21 13:55:29,415 BAD EPOCHS (no improvement): 4
|
749 |
+
2021-02-21 13:55:29,417 ----------------------------------------------------------------------------------------------------
|
750 |
+
2021-02-21 14:10:21,804 epoch 11 - iter 2119/21198 - loss 0.17609195 - samples/sec: 9.50 - lr: 0.000002
|
751 |
+
2021-02-21 14:25:16,338 epoch 11 - iter 4238/21198 - loss 0.18154520 - samples/sec: 9.48 - lr: 0.000002
|
752 |
+
2021-02-21 14:40:12,223 epoch 11 - iter 6357/21198 - loss 0.18097113 - samples/sec: 9.46 - lr: 0.000002
|
753 |
+
2021-02-21 14:55:03,642 epoch 11 - iter 8476/21198 - loss 0.18053539 - samples/sec: 9.51 - lr: 0.000002
|
754 |
+
2021-02-21 15:09:56,533 epoch 11 - iter 10595/21198 - loss 0.17876087 - samples/sec: 9.49 - lr: 0.000002
|
755 |
+
2021-02-21 15:24:53,173 epoch 11 - iter 12714/21198 - loss 0.17894441 - samples/sec: 9.45 - lr: 0.000002
|
756 |
+
2021-02-21 15:39:48,175 epoch 11 - iter 14833/21198 - loss 0.17978821 - samples/sec: 9.47 - lr: 0.000002
|
757 |
+
2021-02-21 15:54:40,494 epoch 11 - iter 16952/21198 - loss 0.18011143 - samples/sec: 9.50 - lr: 0.000002
|
758 |
+
2021-02-21 16:09:33,438 epoch 11 - iter 19071/21198 - loss 0.17919032 - samples/sec: 9.49 - lr: 0.000002
|
759 |
+
2021-02-21 16:24:22,957 epoch 11 - iter 21190/21198 - loss 0.17903132 - samples/sec: 9.53 - lr: 0.000002
|
760 |
+
2021-02-21 16:24:26,245 ----------------------------------------------------------------------------------------------------
|
761 |
+
2021-02-21 16:24:26,245 EPOCH 11 done: loss 0.1790 - lr 0.0000021
|
762 |
+
2021-02-21 16:30:17,246 TEST : loss 0.15147249400615692 - score 0.9062
|
763 |
+
2021-02-21 16:30:17,342 BAD EPOCHS (no improvement): 4
|
764 |
+
2021-02-21 16:30:17,350 ----------------------------------------------------------------------------------------------------
|
765 |
+
2021-02-21 16:45:13,575 epoch 12 - iter 2119/21198 - loss 0.17364982 - samples/sec: 9.46 - lr: 0.000002
|
766 |
+
2021-02-21 17:00:11,813 epoch 12 - iter 4238/21198 - loss 0.17305974 - samples/sec: 9.44 - lr: 0.000002
|
767 |
+
2021-02-21 17:15:07,540 epoch 12 - iter 6357/21198 - loss 0.17213052 - samples/sec: 9.46 - lr: 0.000002
|
768 |
+
2021-02-21 17:30:04,059 epoch 12 - iter 8476/21198 - loss 0.16983198 - samples/sec: 9.46 - lr: 0.000002
|
769 |
+
2021-02-21 17:44:57,853 epoch 12 - iter 10595/21198 - loss 0.17052354 - samples/sec: 9.48 - lr: 0.000002
|
770 |
+
2021-02-21 17:59:52,951 epoch 12 - iter 12714/21198 - loss 0.16948349 - samples/sec: 9.47 - lr: 0.000002
|
771 |
+
2021-02-21 18:14:48,715 epoch 12 - iter 14833/21198 - loss 0.16890758 - samples/sec: 9.46 - lr: 0.000002
|
772 |
+
2021-02-21 18:29:40,011 epoch 12 - iter 16952/21198 - loss 0.16929059 - samples/sec: 9.51 - lr: 0.000002
|
773 |
+
2021-02-21 18:44:42,153 epoch 12 - iter 19071/21198 - loss 0.16928360 - samples/sec: 9.40 - lr: 0.000002
|
774 |
+
2021-02-21 18:59:37,616 epoch 12 - iter 21190/21198 - loss 0.17211801 - samples/sec: 9.47 - lr: 0.000002
|
775 |
+
2021-02-21 18:59:40,898 ----------------------------------------------------------------------------------------------------
|
776 |
+
2021-02-21 18:59:40,898 EPOCH 12 done: loss 0.1721 - lr 0.0000017
|
777 |
+
2021-02-21 19:05:31,029 TEST : loss 0.147916778922081 - score 0.9085
|
778 |
+
2021-02-21 19:05:31,125 BAD EPOCHS (no improvement): 4
|
779 |
+
2021-02-21 19:05:31,142 ----------------------------------------------------------------------------------------------------
|
780 |
+
2021-02-21 19:20:24,965 epoch 13 - iter 2119/21198 - loss 0.16896267 - samples/sec: 9.48 - lr: 0.000002
|
781 |
+
2021-02-21 19:35:21,463 epoch 13 - iter 4238/21198 - loss 0.16653116 - samples/sec: 9.46 - lr: 0.000002
|
782 |
+
2021-02-21 19:50:15,194 epoch 13 - iter 6357/21198 - loss 0.16770765 - samples/sec: 9.48 - lr: 0.000002
|
783 |
+
2021-02-21 20:05:12,891 epoch 13 - iter 8476/21198 - loss 0.17108344 - samples/sec: 9.44 - lr: 0.000002
|
784 |
+
2021-02-21 20:20:06,566 epoch 13 - iter 10595/21198 - loss 0.17184402 - samples/sec: 9.49 - lr: 0.000002
|
785 |
+
2021-02-21 20:34:59,890 epoch 13 - iter 12714/21198 - loss 0.17303152 - samples/sec: 9.49 - lr: 0.000002
|
786 |
+
2021-02-21 20:49:50,908 epoch 13 - iter 14833/21198 - loss 0.17325989 - samples/sec: 9.51 - lr: 0.000001
|
787 |
+
2021-02-21 21:04:47,902 epoch 13 - iter 16952/21198 - loss 0.17294630 - samples/sec: 9.45 - lr: 0.000001
|
788 |
+
2021-02-21 21:19:41,901 epoch 13 - iter 19071/21198 - loss 0.17373625 - samples/sec: 9.48 - lr: 0.000001
|
789 |
+
2021-02-21 21:34:36,135 epoch 13 - iter 21190/21198 - loss 0.17394207 - samples/sec: 9.48 - lr: 0.000001
|
790 |
+
2021-02-21 21:34:39,310 ----------------------------------------------------------------------------------------------------
|
791 |
+
2021-02-21 21:34:39,310 EPOCH 13 done: loss 0.1739 - lr 0.0000014
|
792 |
+
2021-02-21 21:40:34,294 TEST : loss 0.16395367681980133 - score 0.9076
|
793 |
+
2021-02-21 21:40:34,393 BAD EPOCHS (no improvement): 4
|
794 |
+
2021-02-21 21:40:34,407 ----------------------------------------------------------------------------------------------------
|
795 |
+
2021-02-21 21:55:30,019 epoch 14 - iter 2119/21198 - loss 0.17210424 - samples/sec: 9.46 - lr: 0.000001
|
796 |
+
2021-02-21 22:10:22,785 epoch 14 - iter 4238/21198 - loss 0.17224407 - samples/sec: 9.49 - lr: 0.000001
|
797 |
+
2021-02-21 22:25:15,502 epoch 14 - iter 6357/21198 - loss 0.17196186 - samples/sec: 9.50 - lr: 0.000001
|
798 |
+
2021-02-21 22:40:13,225 epoch 14 - iter 8476/21198 - loss 0.17131693 - samples/sec: 9.44 - lr: 0.000001
|
799 |
+
2021-02-21 22:55:12,609 epoch 14 - iter 10595/21198 - loss 0.17336075 - samples/sec: 9.43 - lr: 0.000001
|
800 |
+
2021-02-21 23:10:03,405 epoch 14 - iter 12714/21198 - loss 0.17249936 - samples/sec: 9.52 - lr: 0.000001
|
801 |
+
2021-02-21 23:24:55,615 epoch 14 - iter 14833/21198 - loss 0.17318785 - samples/sec: 9.50 - lr: 0.000001
|
802 |
+
2021-02-21 23:39:39,560 epoch 14 - iter 16952/21198 - loss 0.17208304 - samples/sec: 9.59 - lr: 0.000001
|
803 |
+
2021-02-21 23:54:35,004 epoch 14 - iter 19071/21198 - loss 0.17228505 - samples/sec: 9.47 - lr: 0.000001
|
804 |
+
2021-02-22 00:09:25,613 epoch 14 - iter 21190/21198 - loss 0.17228047 - samples/sec: 9.52 - lr: 0.000001
|
805 |
+
2021-02-22 00:09:28,876 ----------------------------------------------------------------------------------------------------
|
806 |
+
2021-02-22 00:09:28,877 EPOCH 14 done: loss 0.1723 - lr 0.0000010
|
807 |
+
2021-02-22 00:15:21,867 TEST : loss 0.16743017733097076 - score 0.909
|
808 |
+
2021-02-22 00:15:21,963 BAD EPOCHS (no improvement): 4
|
809 |
+
2021-02-22 00:15:21,965 ----------------------------------------------------------------------------------------------------
|
810 |
+
2021-02-22 00:30:16,862 epoch 15 - iter 2119/21198 - loss 0.15790436 - samples/sec: 9.47 - lr: 0.000001
|
811 |
+
2021-02-22 00:45:09,621 epoch 15 - iter 4238/21198 - loss 0.15811998 - samples/sec: 9.49 - lr: 0.000001
|
812 |
+
2021-02-22 01:00:03,426 epoch 15 - iter 6357/21198 - loss 0.16041062 - samples/sec: 9.48 - lr: 0.000001
|
813 |
+
2021-02-22 01:14:56,991 epoch 15 - iter 8476/21198 - loss 0.16204753 - samples/sec: 9.49 - lr: 0.000001
|
814 |
+
2021-02-22 01:29:46,578 epoch 15 - iter 10595/21198 - loss 0.16310173 - samples/sec: 9.53 - lr: 0.000001
|
815 |
+
2021-02-22 01:44:39,948 epoch 15 - iter 12714/21198 - loss 0.16249272 - samples/sec: 9.49 - lr: 0.000001
|
816 |
+
2021-02-22 01:59:33,810 epoch 15 - iter 14833/21198 - loss 0.16196562 - samples/sec: 9.48 - lr: 0.000001
|
817 |
+
2021-02-22 02:14:26,647 epoch 15 - iter 16952/21198 - loss 0.16333266 - samples/sec: 9.49 - lr: 0.000001
|
818 |
+
2021-02-22 02:29:18,415 epoch 15 - iter 19071/21198 - loss 0.16459359 - samples/sec: 9.51 - lr: 0.000001
|
819 |
+
2021-02-22 02:44:12,651 epoch 15 - iter 21190/21198 - loss 0.16491666 - samples/sec: 9.48 - lr: 0.000001
|
820 |
+
2021-02-22 02:44:15,874 ----------------------------------------------------------------------------------------------------
|
821 |
+
2021-02-22 02:44:15,874 EPOCH 15 done: loss 0.1649 - lr 0.0000007
|
822 |
+
2021-02-22 02:50:08,356 TEST : loss 0.17295649647712708 - score 0.9101
|
823 |
+
2021-02-22 02:50:08,450 BAD EPOCHS (no improvement): 4
|
824 |
+
2021-02-22 02:50:08,452 ----------------------------------------------------------------------------------------------------
|
825 |
+
2021-02-22 03:05:07,383 epoch 16 - iter 2119/21198 - loss 0.16869372 - samples/sec: 9.43 - lr: 0.000001
|
826 |
+
2021-02-22 03:20:04,205 epoch 16 - iter 4238/21198 - loss 0.16204002 - samples/sec: 9.45 - lr: 0.000001
|
827 |
+
2021-02-22 03:34:56,532 epoch 16 - iter 6357/21198 - loss 0.16115018 - samples/sec: 9.50 - lr: 0.000001
|
828 |
+
2021-02-22 03:49:52,676 epoch 16 - iter 8476/21198 - loss 0.16290083 - samples/sec: 9.46 - lr: 0.000001
|
829 |
+
2021-02-22 04:04:43,904 epoch 16 - iter 10595/21198 - loss 0.16286029 - samples/sec: 9.51 - lr: 0.000001
|
830 |
+
2021-02-22 04:19:37,979 epoch 16 - iter 12714/21198 - loss 0.16258104 - samples/sec: 9.48 - lr: 0.000001
|
831 |
+
2021-02-22 04:34:27,662 epoch 16 - iter 14833/21198 - loss 0.16217931 - samples/sec: 9.53 - lr: 0.000001
|
832 |
+
2021-02-22 04:49:18,263 epoch 16 - iter 16952/21198 - loss 0.16190092 - samples/sec: 9.52 - lr: 0.000001
|
833 |
+
2021-02-22 05:04:09,607 epoch 16 - iter 19071/21198 - loss 0.16271366 - samples/sec: 9.51 - lr: 0.000001
|
834 |
+
2021-02-22 05:19:03,032 epoch 16 - iter 21190/21198 - loss 0.16309304 - samples/sec: 9.49 - lr: 0.000000
|
835 |
+
2021-02-22 05:19:06,131 ----------------------------------------------------------------------------------------------------
|
836 |
+
2021-02-22 05:19:06,131 EPOCH 16 done: loss 0.1631 - lr 0.0000005
|
837 |
+
2021-02-22 05:24:59,209 TEST : loss 0.1732577085494995 - score 0.9099
|
838 |
+
2021-02-22 05:24:59,306 BAD EPOCHS (no improvement): 4
|
839 |
+
2021-02-22 05:24:59,318 ----------------------------------------------------------------------------------------------------
|
840 |
+
2021-02-22 05:39:50,755 epoch 17 - iter 2119/21198 - loss 0.15607883 - samples/sec: 9.51 - lr: 0.000000
|
841 |
+
2021-02-22 05:54:41,713 epoch 17 - iter 4238/21198 - loss 0.16295560 - samples/sec: 9.51 - lr: 0.000000
|
842 |
+
2021-02-22 06:09:33,595 epoch 17 - iter 6357/21198 - loss 0.16030109 - samples/sec: 9.50 - lr: 0.000000
|
843 |
+
2021-02-22 06:24:26,942 epoch 17 - iter 8476/21198 - loss 0.16028383 - samples/sec: 9.49 - lr: 0.000000
|
844 |
+
2021-02-22 06:39:19,965 epoch 17 - iter 10595/21198 - loss 0.16179951 - samples/sec: 9.49 - lr: 0.000000
|
845 |
+
2021-02-22 06:54:14,002 epoch 17 - iter 12714/21198 - loss 0.16064671 - samples/sec: 9.48 - lr: 0.000000
|
846 |
+
2021-02-22 07:09:02,879 epoch 17 - iter 14833/21198 - loss 0.16118933 - samples/sec: 9.54 - lr: 0.000000
|
847 |
+
2021-02-22 07:23:53,696 epoch 17 - iter 16952/21198 - loss 0.16233903 - samples/sec: 9.52 - lr: 0.000000
|
848 |
+
2021-02-22 07:38:43,895 epoch 17 - iter 19071/21198 - loss 0.16244551 - samples/sec: 9.52 - lr: 0.000000
|
849 |
+
2021-02-22 07:53:35,588 epoch 17 - iter 21190/21198 - loss 0.16243178 - samples/sec: 9.51 - lr: 0.000000
|
850 |
+
2021-02-22 07:53:38,781 ----------------------------------------------------------------------------------------------------
|
851 |
+
2021-02-22 07:53:38,781 EPOCH 17 done: loss 0.1624 - lr 0.0000003
|
852 |
+
2021-02-22 07:59:36,439 TEST : loss 0.1792287975549698 - score 0.9098
|
853 |
+
2021-02-22 07:59:36,538 BAD EPOCHS (no improvement): 4
|
854 |
+
2021-02-22 07:59:36,561 ----------------------------------------------------------------------------------------------------
|
855 |
+
2021-02-22 08:14:29,823 epoch 18 - iter 2119/21198 - loss 0.16946072 - samples/sec: 9.49 - lr: 0.000000
|
856 |
+
2021-02-22 08:29:28,618 epoch 18 - iter 4238/21198 - loss 0.16431210 - samples/sec: 9.43 - lr: 0.000000
|
857 |
+
2021-02-22 08:44:23,757 epoch 18 - iter 6357/21198 - loss 0.16285664 - samples/sec: 9.47 - lr: 0.000000
|
858 |
+
2021-02-22 08:59:18,330 epoch 18 - iter 8476/21198 - loss 0.16406026 - samples/sec: 9.48 - lr: 0.000000
|
859 |
+
2021-02-22 09:14:15,549 epoch 18 - iter 10595/21198 - loss 0.16218940 - samples/sec: 9.45 - lr: 0.000000
|
860 |
+
2021-02-22 09:29:11,539 epoch 18 - iter 12714/21198 - loss 0.16137864 - samples/sec: 9.46 - lr: 0.000000
|
861 |
+
2021-02-22 09:44:06,143 epoch 18 - iter 14833/21198 - loss 0.16211856 - samples/sec: 9.48 - lr: 0.000000
|
862 |
+
2021-02-22 09:59:03,167 epoch 18 - iter 16952/21198 - loss 0.16214711 - samples/sec: 9.45 - lr: 0.000000
|
863 |
+
2021-02-22 10:13:57,239 epoch 18 - iter 19071/21198 - loss 0.16058721 - samples/sec: 9.48 - lr: 0.000000
|
864 |
+
2021-02-22 10:28:52,182 epoch 18 - iter 21190/21198 - loss 0.16093573 - samples/sec: 9.47 - lr: 0.000000
|
865 |
+
2021-02-22 10:28:55,515 ----------------------------------------------------------------------------------------------------
|
866 |
+
2021-02-22 10:28:55,515 EPOCH 18 done: loss 0.1610 - lr 0.0000001
|
867 |
+
2021-02-22 10:34:48,208 TEST : loss 0.17890706658363342 - score 0.9095
|
868 |
+
2021-02-22 10:34:48,308 BAD EPOCHS (no improvement): 4
|
869 |
+
2021-02-22 10:34:48,332 ----------------------------------------------------------------------------------------------------
|
870 |
+
2021-02-22 10:49:43,738 epoch 19 - iter 2119/21198 - loss 0.16694990 - samples/sec: 9.47 - lr: 0.000000
|
871 |
+
2021-02-22 11:04:30,455 epoch 19 - iter 4238/21198 - loss 0.15984197 - samples/sec: 9.56 - lr: 0.000000
|
872 |
+
2021-02-22 11:19:21,091 epoch 19 - iter 6357/21198 - loss 0.15796573 - samples/sec: 9.52 - lr: 0.000000
|
873 |
+
2021-02-22 11:34:16,935 epoch 19 - iter 8476/21198 - loss 0.16031077 - samples/sec: 9.46 - lr: 0.000000
|
874 |
+
2021-02-22 11:49:14,170 epoch 19 - iter 10595/21198 - loss 0.16114764 - samples/sec: 9.45 - lr: 0.000000
|
875 |
+
2021-02-22 12:04:12,070 epoch 19 - iter 12714/21198 - loss 0.16077654 - samples/sec: 9.44 - lr: 0.000000
|
876 |
+
2021-02-22 12:19:05,634 epoch 19 - iter 14833/21198 - loss 0.16093868 - samples/sec: 9.49 - lr: 0.000000
|
877 |
+
2021-02-22 12:34:03,912 epoch 19 - iter 16952/21198 - loss 0.16092922 - samples/sec: 9.44 - lr: 0.000000
|
878 |
+
2021-02-22 12:48:59,408 epoch 19 - iter 19071/21198 - loss 0.16176484 - samples/sec: 9.47 - lr: 0.000000
|
879 |
+
2021-02-22 13:03:55,588 epoch 19 - iter 21190/21198 - loss 0.16136077 - samples/sec: 9.46 - lr: 0.000000
|
880 |
+
2021-02-22 13:03:58,842 ----------------------------------------------------------------------------------------------------
|
881 |
+
2021-02-22 13:03:58,842 EPOCH 19 done: loss 0.1613 - lr 0.0000000
|
882 |
+
2021-02-22 13:09:51,774 TEST : loss 0.1799449324607849 - score 0.9093
|
883 |
+
2021-02-22 13:09:51,873 BAD EPOCHS (no improvement): 4
|
884 |
+
2021-02-22 13:09:51,889 ----------------------------------------------------------------------------------------------------
|
885 |
+
2021-02-22 13:24:48,886 epoch 20 - iter 2119/21198 - loss 0.15743940 - samples/sec: 9.45 - lr: 0.000000
|
886 |
+
2021-02-22 13:39:41,650 epoch 20 - iter 4238/21198 - loss 0.15941045 - samples/sec: 9.49 - lr: 0.000000
|
887 |
+
2021-02-22 13:54:35,155 epoch 20 - iter 6357/21198 - loss 0.16085263 - samples/sec: 9.49 - lr: 0.000000
|
888 |
+
2021-02-22 14:09:30,408 epoch 20 - iter 8476/21198 - loss 0.16038502 - samples/sec: 9.47 - lr: 0.000000
|
889 |
+
2021-02-22 14:24:21,244 epoch 20 - iter 10595/21198 - loss 0.15929046 - samples/sec: 9.52 - lr: 0.000000
|
890 |
+
2021-02-22 14:39:15,988 epoch 20 - iter 12714/21198 - loss 0.15817473 - samples/sec: 9.47 - lr: 0.000000
|
891 |
+
2021-02-22 14:54:08,818 epoch 20 - iter 14833/21198 - loss 0.16049560 - samples/sec: 9.49 - lr: 0.000000
|
892 |
+
2021-02-22 15:09:01,889 epoch 20 - iter 16952/21198 - loss 0.16079237 - samples/sec: 9.49 - lr: 0.000000
|
893 |
+
2021-02-22 15:23:54,278 epoch 20 - iter 19071/21198 - loss 0.16175262 - samples/sec: 9.50 - lr: 0.000000
|
894 |
+
2021-02-22 15:38:48,341 epoch 20 - iter 21190/21198 - loss 0.16071107 - samples/sec: 9.48 - lr: 0.000000
|
895 |
+
2021-02-22 15:38:51,585 ----------------------------------------------------------------------------------------------------
|
896 |
+
2021-02-22 15:38:51,586 EPOCH 20 done: loss 0.1607 - lr 0.0000000
|
897 |
+
2021-02-22 15:44:48,115 TEST : loss 0.17999354004859924 - score 0.9093
|
898 |
+
2021-02-22 15:44:48,213 BAD EPOCHS (no improvement): 4
|
899 |
+
2021-02-22 15:45:25,862 ----------------------------------------------------------------------------------------------------
|
900 |
+
2021-02-22 15:45:25,862 Testing using best model ...
|
901 |
+
2021-02-22 15:51:35,093 0.9055 0.9132 0.9093
|
902 |
+
2021-02-22 15:51:35,093
|
903 |
+
Results:
|
904 |
+
- F1-score (micro) 0.9093
|
905 |
+
- F1-score (macro) 0.8233
|
906 |
+
|
907 |
+
By class:
|
908 |
+
CARDINAL tp: 802 - fp: 124 - fn: 133 - precision: 0.8661 - recall: 0.8578 - f1-score: 0.8619
|
909 |
+
DATE tp: 1435 - fp: 219 - fn: 167 - precision: 0.8676 - recall: 0.8958 - f1-score: 0.8814
|
910 |
+
EVENT tp: 45 - fp: 19 - fn: 18 - precision: 0.7031 - recall: 0.7143 - f1-score: 0.7087
|
911 |
+
FAC tp: 105 - fp: 26 - fn: 30 - precision: 0.8015 - recall: 0.7778 - f1-score: 0.7895
|
912 |
+
GPE tp: 2161 - fp: 62 - fn: 79 - precision: 0.9721 - recall: 0.9647 - f1-score: 0.9684
|
913 |
+
LANGUAGE tp: 14 - fp: 2 - fn: 8 - precision: 0.8750 - recall: 0.6364 - f1-score: 0.7368
|
914 |
+
LAW tp: 26 - fp: 18 - fn: 14 - precision: 0.5909 - recall: 0.6500 - f1-score: 0.6190
|
915 |
+
LOC tp: 140 - fp: 41 - fn: 39 - precision: 0.7735 - recall: 0.7821 - f1-score: 0.7778
|
916 |
+
MONEY tp: 286 - fp: 29 - fn: 28 - precision: 0.9079 - recall: 0.9108 - f1-score: 0.9094
|
917 |
+
NORP tp: 820 - fp: 45 - fn: 21 - precision: 0.9480 - recall: 0.9750 - f1-score: 0.9613
|
918 |
+
ORDINAL tp: 168 - fp: 38 - fn: 27 - precision: 0.8155 - recall: 0.8615 - f1-score: 0.8379
|
919 |
+
ORG tp: 1650 - fp: 168 - fn: 145 - precision: 0.9076 - recall: 0.9192 - f1-score: 0.9134
|
920 |
+
PERCENT tp: 310 - fp: 37 - fn: 39 - precision: 0.8934 - recall: 0.8883 - f1-score: 0.8908
|
921 |
+
PERSON tp: 1903 - fp: 81 - fn: 85 - precision: 0.9592 - recall: 0.9572 - f1-score: 0.9582
|
922 |
+
PRODUCT tp: 66 - fp: 21 - fn: 10 - precision: 0.7586 - recall: 0.8684 - f1-score: 0.8098
|
923 |
+
QUANTITY tp: 87 - fp: 22 - fn: 18 - precision: 0.7982 - recall: 0.8286 - f1-score: 0.8131
|
924 |
+
TIME tp: 144 - fp: 72 - fn: 68 - precision: 0.6667 - recall: 0.6792 - f1-score: 0.6729
|
925 |
+
WORK_OF_ART tp: 118 - fp: 49 - fn: 48 - precision: 0.7066 - recall: 0.7108 - f1-score: 0.7087
|
926 |
+
2021-02-22 15:51:35,093 ----------------------------------------------------------------------------------------------------
|