--- tags: - flair - token-classification - sequence-tagger-model language: fr datasets: - conll2003 inference: false --- ## French NER in Flair (default model) This is the standard 4-class NER model for French that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **90,61** (WikiNER) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-french") # make example sentence sentence = Sentence("George Washington est allé à Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (0.7394)] Span [6]: "Washington" [− Labels: LOC (0.9161)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington est allé à Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import WIKINER_FRENCH from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = WIKINER_FRENCH() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # GloVe embeddings WordEmbeddings('fr'), # contextual string embeddings, forward FlairEmbeddings('fr-forward'), # contextual string embeddings, backward FlairEmbeddings('fr-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-french', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).