--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: fruits_and_vegetables_image_classification results: [] --- # fruits_and_vegetables_image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3835 - Accuracy: 0.9159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 87 | 1.6751 | 0.8768 | | No log | 2.0 | 174 | 1.0260 | 0.8957 | | No log | 3.0 | 261 | 0.6767 | 0.8957 | | No log | 4.0 | 348 | 0.5445 | 0.8986 | | No log | 5.0 | 435 | 0.4685 | 0.9072 | | 0.8955 | 6.0 | 522 | 0.4328 | 0.9072 | | 0.8955 | 7.0 | 609 | 0.4028 | 0.9 | | 0.8955 | 8.0 | 696 | 0.3958 | 0.9145 | | 0.8955 | 9.0 | 783 | 0.3835 | 0.9159 | | 0.8955 | 10.0 | 870 | 0.3842 | 0.9145 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0