flaviagiammarino commited on
Commit
0a901f8
1 Parent(s): b00dede

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md CHANGED
@@ -1,3 +1,58 @@
1
  ---
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
  ---
4
+ # Model Card for MedSAM
5
+
6
+ MedSAM is a fine-tuned version of [SAM](https://huggingface.co/docs/transformers/main/model_doc/sam) for the medical domain.
7
+
8
+ ## Usage
9
+
10
+ ```python
11
+ import requests
12
+ import torch
13
+ import numpy as np
14
+ import matplotlib.pyplot as plt
15
+ from PIL import Image
16
+ from transformers import SamModel, SamProcessor
17
+
18
+ device = "cuda" if torch.cuda.is_available() else "cpu"
19
+
20
+ model = SamModel.from_pretrained("flaviagiammarino/medsam-vit-base").to(device)
21
+ processor = SamProcessor.from_pretrained("flaviagiammarino/medsam-vit-base")
22
+
23
+ img_url = "https://raw.githubusercontent.com/bowang-lab/MedSAM/main/assets/img_demo.png"
24
+ raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
25
+ input_boxes = [95., 255., 190., 350.]
26
+
27
+ inputs = processor(raw_image, input_boxes=[[input_boxes]], return_tensors="pt").to(device)
28
+ outputs = model(**inputs, multimask_output=False)
29
+ masks = processor.image_processor.post_process_masks(outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu())
30
+
31
+ def show_mask(mask, ax, random_color):
32
+ if random_color:
33
+ color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
34
+ else:
35
+ color = np.array([251/255, 252/255, 30/255, 0.6])
36
+ h, w = mask.shape[-2:]
37
+ mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
38
+ ax.imshow(mask_image)
39
+
40
+ def show_box(box, ax):
41
+ x0, y0 = box[0], box[1]
42
+ w, h = box[2] - box[0], box[3] - box[1]
43
+ ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor="blue", facecolor=(0, 0, 0, 0), lw=2))
44
+
45
+ fig, ax = plt.subplots(1, 2, figsize=(10, 5))
46
+ ax[0].imshow(np.array(raw_image))
47
+ show_box(input_boxes, ax[0])
48
+ ax[0].set_title("Input Image and Bounding Box")
49
+ ax[0].axis("off")
50
+ ax[1].imshow(np.array(raw_image))
51
+ show_mask(masks[0], ax=ax[1], random_color=False)
52
+ show_box(input_boxes, ax[1])
53
+ ax[1].set_title("MedSAM Segmentation")
54
+ ax[1].axis("off")
55
+ plt.tight_layout()
56
+ plt.show()
57
+ ```
58
+ ![example](scripts/pt_example.png)