|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Training a CLIP like dual encoder models using text and vision encoders in the library. |
|
|
|
The script can be used to train CLIP like models for languages other than english by using |
|
a text encoder pre-trained in the desired language. Currently this script support the following vision |
|
and text models: |
|
Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip) |
|
Text models: BERT, ROBERTa (https://huggingface.co/models?filter=masked-lm) |
|
""" |
|
|
|
import json |
|
import logging |
|
import os |
|
import sys |
|
import time |
|
from dataclasses import dataclass, field |
|
from pathlib import Path |
|
from typing import Callable, Optional |
|
|
|
import numpy as np |
|
import torch |
|
from torchvision.datasets import VisionDataset |
|
from torchvision.io import ImageReadMode, read_image |
|
from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize |
|
from torchvision.transforms.functional import InterpolationMode |
|
from tqdm import tqdm |
|
|
|
import jax |
|
import jax.numpy as jnp |
|
import optax |
|
import transformers |
|
from flax import jax_utils |
|
from flax.jax_utils import unreplicate |
|
from flax.training import train_state |
|
from flax.training.common_utils import get_metrics, shard, shard_prng_key |
|
from modeling_hybrid_clip import FlaxHybridCLIP |
|
from transformers import AutoTokenizer, HfArgumentParser, TrainingArguments, is_tensorboard_available, set_seed |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
has_tensorboard = is_tensorboard_available() |
|
if has_tensorboard: |
|
try: |
|
from flax.metrics.tensorboard import SummaryWriter |
|
except ImportError as ie: |
|
has_tensorboard = False |
|
print(f"Unable to display metrics through TensorBoard because some package are not installed: {ie}") |
|
|
|
else: |
|
print( |
|
"Unable to display metrics through TensorBoard because the package is not installed: " |
|
"Please run pip install tensorboard to enable." |
|
) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
text_model_name_or_path: str = field( |
|
metadata={ |
|
"help": "The text model checkpoint for weights initialization." |
|
"Don't set if you want to train a model from scratch." |
|
}, |
|
) |
|
vision_model_name_or_path: str = field( |
|
metadata={ |
|
"help": "The vision model checkpoint for weights initialization." |
|
"Don't set if you want to train a model from scratch." |
|
}, |
|
) |
|
from_pt: bool = field( |
|
default=True, |
|
metadata={"help": "whether to load the text and vision model using PyTorch checkpoints."}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." |
|
}, |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory containing input files."}) |
|
train_file: Optional[str] = field( |
|
default=None, metadata={"help": "The input training data file (a jsonlines file)."} |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file (a jsonlines file)."}, |
|
) |
|
max_seq_length: Optional[int] = field( |
|
default=72, |
|
metadata={ |
|
"help": "The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension == "json", "`train_file` should be a json file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension == "json", "`validation_file` should be a json file." |
|
|
|
|
|
|
|
|
|
class Transform(torch.nn.Module): |
|
def __init__(self, image_size): |
|
super().__init__() |
|
self.transforms = torch.nn.Sequential( |
|
Resize([image_size], interpolation=InterpolationMode.BICUBIC), |
|
CenterCrop(image_size), |
|
ConvertImageDtype(torch.float), |
|
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
with torch.no_grad(): |
|
x = self.transforms(x) |
|
return x |
|
|
|
|
|
class ImageTextDataset(VisionDataset): |
|
""" |
|
Dtaset for loading image-text data for tasks like CLIP training, Image Captioning. |
|
|
|
Args: |
|
root: (string): The root path where the dataset is stored |
|
file_path: (string): Path to the file containing the image_paths and associated captions. |
|
The expected format is jsonlines where each line is a json object containing to keys. |
|
`image_path`: The path to the image. |
|
`captions`: An `array` of captions. |
|
transform (callable, optional): A function/transform that takes in an PIL image |
|
and returns a transformed version. E.g, ``transforms.ToTensor`` |
|
target_transform (callable, optional): A function/transform that takes in the |
|
target and transforms it. |
|
transforms (callable, optional): A function/transform that takes input sample and its target as entry |
|
and returns a transformed version. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
root: str, |
|
file_path: str, |
|
captions_per_image=1, |
|
transform: Optional[Callable] = None, |
|
target_transform: Optional[Callable] = None, |
|
transforms: Optional[Callable] = None, |
|
): |
|
super().__init__(root, transforms, transform, target_transform) |
|
|
|
with open(file_path, "r") as f: |
|
examples = [json.loads(line) for line in f.readlines()] |
|
|
|
self.captions = [] |
|
self.image_paths = [] |
|
|
|
for example in examples: |
|
captions_subset = example["captions"][:captions_per_image] |
|
self.captions.extend(captions_subset) |
|
self.image_paths.extend([example["image_path"]] * len(captions_subset)) |
|
|
|
def _load_image(self, idx: int): |
|
path = self.image_paths[idx] |
|
return read_image(path, mode=ImageReadMode.RGB) |
|
|
|
def _load_target(self, idx): |
|
return self.captions[idx] |
|
|
|
def __getitem__(self, index: int): |
|
image = self._load_image(index) |
|
target = self._load_target(index) |
|
|
|
if self.transforms is not None: |
|
image, target = self.transforms(image, target) |
|
|
|
return image, target |
|
|
|
def __len__(self) -> int: |
|
return len(self.captions) |
|
|
|
|
|
class TrainState(train_state.TrainState): |
|
dropout_rng: jnp.ndarray |
|
|
|
def replicate(self): |
|
return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) |
|
|
|
|
|
def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step): |
|
summary_writer.scalar("train_time", train_time, step) |
|
|
|
train_metrics = get_metrics(train_metrics) |
|
for key, vals in train_metrics.items(): |
|
tag = f"train_{key}" |
|
for i, val in enumerate(vals): |
|
summary_writer.scalar(tag, val, step - len(vals) + i + 1) |
|
|
|
for metric_name, value in eval_metrics.items(): |
|
summary_writer.scalar(f"eval_{metric_name}", value, step) |
|
|
|
|
|
def create_learning_rate_fn( |
|
train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float |
|
) -> Callable[[int], jnp.array]: |
|
"""Returns a linear warmup, linear_decay learning rate function.""" |
|
steps_per_epoch = train_ds_size // train_batch_size |
|
num_train_steps = steps_per_epoch * num_train_epochs |
|
warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) |
|
decay_fn = optax.linear_schedule( |
|
init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps |
|
) |
|
schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) |
|
return schedule_fn |
|
|
|
|
|
def main(): |
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
if ( |
|
os.path.exists(training_args.output_dir) |
|
and os.listdir(training_args.output_dir) |
|
and training_args.do_train |
|
and not training_args.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty." |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
if model_args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer |
|
) |
|
elif model_args.text_model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_args.text_model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer |
|
) |
|
else: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script." |
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name." |
|
) |
|
|
|
model = FlaxHybridCLIP.from_text_vision_pretrained( |
|
model_args.text_model_name_or_path, |
|
model_args.vision_model_name_or_path, |
|
seed=training_args.seed, |
|
dtype=getattr(jnp, model_args.dtype), |
|
text_from_pt=model_args.from_pt, |
|
vision_from_pt=model_args.from_pt, |
|
) |
|
config = model.config |
|
|
|
set_seed(training_args.seed) |
|
|
|
|
|
preprocess = Transform(config.vision_config.image_size) |
|
preprocess = torch.jit.script(preprocess) |
|
|
|
|
|
train_dataset = ImageTextDataset( |
|
data_args.data_dir, |
|
data_args.train_file, |
|
captions_per_image=1, |
|
transform=preprocess, |
|
) |
|
|
|
eval_dataset = ImageTextDataset( |
|
data_args.data_dir, |
|
data_args.validation_file, |
|
captions_per_image=1, |
|
transform=preprocess, |
|
) |
|
|
|
|
|
num_epochs = int(training_args.num_train_epochs) |
|
train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() |
|
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() |
|
steps_per_epoch = len(train_dataset) // train_batch_size |
|
total_train_steps = steps_per_epoch * num_epochs |
|
|
|
|
|
def collate_fn(examples): |
|
pixel_values = torch.stack([example[0] for example in examples]).permute(0, 2, 3, 1).numpy() |
|
captions = [example[1] for example in examples] |
|
inputs = tokenizer(captions, max_length=data_args.max_seq_length, padding="max_length", truncation=True, return_tensors="np") |
|
|
|
batch = { |
|
"pixel_values": pixel_values, |
|
"input_ids": inputs["input_ids"], |
|
"attention_mask": inputs["attention_mask"], |
|
} |
|
|
|
return batch |
|
|
|
|
|
train_loader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
batch_size=train_batch_size, |
|
shuffle=True, |
|
num_workers=data_args.preprocessing_num_workers, |
|
persistent_workers=True, |
|
drop_last=True, |
|
collate_fn=collate_fn, |
|
) |
|
|
|
eval_loader = torch.utils.data.DataLoader( |
|
eval_dataset, |
|
batch_size=eval_batch_size, |
|
shuffle=False, |
|
num_workers=data_args.preprocessing_num_workers, |
|
persistent_workers=True, |
|
drop_last=True, |
|
collate_fn=collate_fn, |
|
) |
|
|
|
|
|
if has_tensorboard and jax.process_index() == 0: |
|
summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir).joinpath("logs").as_posix()) |
|
|
|
|
|
rng = jax.random.PRNGKey(training_args.seed) |
|
rng, dropout_rng = jax.random.split(rng) |
|
|
|
|
|
linear_decay_lr_schedule_fn = create_learning_rate_fn( |
|
len(train_dataset), |
|
train_batch_size, |
|
training_args.num_train_epochs, |
|
training_args.warmup_steps, |
|
training_args.learning_rate, |
|
) |
|
|
|
|
|
adamw = optax.adamw( |
|
learning_rate=linear_decay_lr_schedule_fn, |
|
b1=training_args.adam_beta1, |
|
b2=training_args.adam_beta2, |
|
eps=training_args.adam_epsilon, |
|
weight_decay=training_args.weight_decay, |
|
) |
|
|
|
|
|
state = TrainState.create(apply_fn=model.__call__, params=model.params, tx=adamw, dropout_rng=dropout_rng) |
|
|
|
def cross_entropy(logits, axis): |
|
logprobs = jax.nn.log_softmax(logits, axis=axis) |
|
nll = jnp.diag(logprobs) |
|
ce = -jnp.mean(nll) |
|
return ce |
|
|
|
def clip_loss(similarity): |
|
loss = (cross_entropy(similarity, axis=0) + cross_entropy(similarity, axis=1)) / 2 |
|
return loss |
|
|
|
|
|
def train_step(state, batch): |
|
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) |
|
|
|
def compute_loss(params): |
|
logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] |
|
loss = clip_loss(logits) |
|
return loss |
|
|
|
grad_fn = jax.value_and_grad(compute_loss) |
|
loss, grad = grad_fn(state.params) |
|
grad = jax.lax.pmean(grad, "batch") |
|
|
|
new_state = state.apply_gradients(grads=grad, dropout_rng=new_dropout_rng) |
|
|
|
metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.step)} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
|
|
return new_state, metrics |
|
|
|
|
|
def eval_step(params, batch): |
|
logits = model(**batch, params=params, train=False)[0] |
|
loss = clip_loss(logits) |
|
|
|
|
|
metrics = {"loss": loss} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
return metrics |
|
|
|
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) |
|
p_eval_step = jax.pmap(eval_step, "batch") |
|
|
|
|
|
state = state.replicate() |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {num_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") |
|
logger.info(f" Total optimization steps = {total_train_steps}") |
|
|
|
train_time = 0 |
|
|
|
rng, input_rng = jax.random.split(rng) |
|
|
|
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) |
|
best_loss = np.inf |
|
for epoch in epochs: |
|
|
|
train_start = time.time() |
|
|
|
|
|
rng, input_rng = jax.random.split(rng) |
|
train_metrics = [] |
|
|
|
steps_per_epoch = len(train_dataset) // train_batch_size |
|
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False) |
|
|
|
for batch in train_loader: |
|
batch = shard(batch) |
|
state, train_metric = p_train_step(state, batch) |
|
train_metrics.append(train_metric) |
|
|
|
train_step_progress_bar.update(1) |
|
|
|
train_time += time.time() - train_start |
|
|
|
train_metric = unreplicate(train_metric) |
|
|
|
train_step_progress_bar.close() |
|
epochs.write( |
|
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})" |
|
) |
|
|
|
|
|
eval_metrics = [] |
|
eval_steps = len(eval_dataset) // eval_batch_size |
|
eval_step_progress_bar = tqdm(total=eval_steps, desc="Evaluating...", position=2, leave=False) |
|
for batch in eval_loader: |
|
|
|
batch = shard(batch) |
|
metrics = p_eval_step(state.params, batch) |
|
eval_metrics.append(metrics) |
|
|
|
eval_step_progress_bar.update(1) |
|
|
|
|
|
eval_metrics = get_metrics(eval_metrics) |
|
|
|
eval_metrics = jax.tree_map(jnp.mean, eval_metrics) |
|
|
|
|
|
eval_step_progress_bar.close() |
|
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})" |
|
epochs.write(desc) |
|
epochs.desc = desc |
|
|
|
|
|
if has_tensorboard and jax.process_index() == 0: |
|
cur_step = epoch * (len(train_dataset) // train_batch_size) |
|
write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step) |
|
|
|
|
|
if jax.process_index() == 0: |
|
if eval_metrics["loss"] < best_loss: |
|
logger.info(f"Saving best model with a loss = {eval_metrics['loss']}") |
|
params = jax.device_get(unreplicate(state.params)) |
|
model.save_pretrained( |
|
training_args.output_dir, |
|
params=params, |
|
push_to_hub=training_args.push_to_hub, |
|
commit_message=f"Saving weights and logs of epoch {epoch+1}", |
|
) |
|
best_loss = eval_metrics["loss"] |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|