clip-spanish / prepare_wit.py
edugp's picture
Update downloading and training scripts
98c2b8e
raw
history blame
4.09 kB
import argparse
import json
import logging
import os
import time
from typing import List
import urllib.request
import urllib.error
import pandas as pd
from tqdm import tqdm
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger = logging.getLogger(__name__)
def split_and_save_datasets(lines: List[str], output_dir: str, train_proportion: float, valid_proportion: float):
total_lines = len(lines)
train_lines = lines[:int(total_lines * train_proportion)]
valid_lines = lines[int(total_lines * train_proportion):int(total_lines * (train_proportion + valid_proportion))]
test_lines = lines[int(total_lines * (train_proportion + valid_proportion)):]
with open(f"{output_dir}/train_dataset.json", "w") as f:
f.write("\n".join(train_lines))
with open(f"{output_dir}/valid_dataset.json", "w") as f:
f.write("\n".join(valid_lines))
with open(f"{output_dir}/test_dataset.json", "w") as f:
f.write("\n".join(test_lines))
def prepare_wit(tsv: str, language: str, output_dir: str, seed: int, train_proportion: float, valid_proportion: float, backup_period: int, language_col: str="language", caption_col: str="caption_reference_description", url_col: str="image_url", pause=0.1, retries: int=5):
os.makedirs(output_dir, exist_ok=True)
logger.info("Loading dataset")
df = pd.read_csv(tsv, sep="\t", engine="python")
df = df[(df["language"] == language) & (~df["caption_reference_description"].isnull())]
# Shuffle
df = df.sample(frac=1.0, random_state=seed)
logger.info("Download started")
lines = []
count = 0
try:
with tqdm(total=len(df)) as pbar:
for i, row in tqdm(df.iterrows()):
url = row[url_col]
caption = row[caption_col]
# Trim image file names so that they are no longer than 100 characters
image_filename = url.split('/')[-1][-100:]
image_path = f"{output_dir}/{image_filename}"
for retry in range(retries):
try:
# Download file
urllib.request.urlretrieve(url, image_path)
lines.append(json.dumps({"image_path": image_path, "captions": [caption]}, ensure_ascii=False))
count += 1
break
except urllib.error.HTTPError as e:
# time.sleep(pause)
pass
if count % backup_period == 0:
logger.info(f"Saving dataset backup: Number of lines {len(lines)}")
split_and_save_datasets(lines, output_dir, train_proportion, valid_proportion)
if retry == retries:
raise ValueError("Rate limit achieved:", e)
pbar.update(1)
# Save existing dataset, even upon failure
finally:
split_and_save_datasets(lines, output_dir, train_proportion, valid_proportion)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description = "Download and prepare the WIT dataset")
parser.add_argument("--tsv", type=str, default=f"/home/{os.environ['USER']}/data/wit/wit_v1.train.all-1percent_sample.tsv")
parser.add_argument("--language", type=str, default="es")
parser.add_argument("--output_dir", type=str, default=f"/home/{os.environ['USER']}/data/wit/prepared_dataset")
parser.add_argument("--random_seed", type=int, default=0)
parser.add_argument("--train_proportion", type=float, default=0.8)
parser.add_argument("--valid_proportion", type=float, default=0.1)
parser.add_argument("--backup_period", type=int, default=1000)
args = parser.parse_args()
assert args.train_proportion + args.valid_proportion < 1.0, "The sum of train_proportion and valid_proportion has to be < 1.0"
prepare_wit(args.tsv, args.language, args.output_dir, args.random_seed, args.train_proportion, args.valid_proportion, args.backup_period)