Add training scripts and initial model trained on 1% of the data.
Browse files- .gitattributes +1 -0
- clip_spanish_1_percent/config.json +157 -0
- clip_spanish_1_percent/flax_model.msgpack +3 -0
- configuration_hybrid_clip.py +1 -0
- discard_incorrect_files.py +23 -0
- modeling_hybrid_clip.py +1 -0
- prepare_wit.py +68 -0
- run-clip.sh +18 -0
- run_hybrid_clip.py +1 -0
- test_on_image.py +34 -0
.gitattributes
CHANGED
@@ -14,3 +14,4 @@
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
clip_spanish_1_percent/config.json
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"HybridCLIP"
|
4 |
+
],
|
5 |
+
"initializer_factor": 1.0,
|
6 |
+
"model_type": "hybrid-clip",
|
7 |
+
"projection_dim": 512,
|
8 |
+
"seed": 42,
|
9 |
+
"text_config": {
|
10 |
+
"_name_or_path": "dccuchile/bert-base-spanish-wwm-cased",
|
11 |
+
"add_cross_attention": false,
|
12 |
+
"architectures": [
|
13 |
+
"BertForMaskedLM"
|
14 |
+
],
|
15 |
+
"attention_probs_dropout_prob": 0.1,
|
16 |
+
"bad_words_ids": null,
|
17 |
+
"bos_token_id": null,
|
18 |
+
"chunk_size_feed_forward": 0,
|
19 |
+
"decoder_start_token_id": null,
|
20 |
+
"diversity_penalty": 0.0,
|
21 |
+
"do_sample": false,
|
22 |
+
"early_stopping": false,
|
23 |
+
"encoder_no_repeat_ngram_size": 0,
|
24 |
+
"eos_token_id": null,
|
25 |
+
"finetuning_task": null,
|
26 |
+
"forced_bos_token_id": null,
|
27 |
+
"forced_eos_token_id": null,
|
28 |
+
"gradient_checkpointing": false,
|
29 |
+
"hidden_act": "gelu",
|
30 |
+
"hidden_dropout_prob": 0.1,
|
31 |
+
"hidden_size": 768,
|
32 |
+
"id2label": {
|
33 |
+
"0": "LABEL_0",
|
34 |
+
"1": "LABEL_1"
|
35 |
+
},
|
36 |
+
"initializer_range": 0.02,
|
37 |
+
"intermediate_size": 3072,
|
38 |
+
"is_decoder": false,
|
39 |
+
"is_encoder_decoder": false,
|
40 |
+
"label2id": {
|
41 |
+
"LABEL_0": 0,
|
42 |
+
"LABEL_1": 1
|
43 |
+
},
|
44 |
+
"layer_norm_eps": 1e-12,
|
45 |
+
"length_penalty": 1.0,
|
46 |
+
"max_length": 20,
|
47 |
+
"max_position_embeddings": 512,
|
48 |
+
"min_length": 0,
|
49 |
+
"model_type": "bert",
|
50 |
+
"no_repeat_ngram_size": 0,
|
51 |
+
"num_attention_heads": 12,
|
52 |
+
"num_beam_groups": 1,
|
53 |
+
"num_beams": 1,
|
54 |
+
"num_hidden_layers": 12,
|
55 |
+
"num_return_sequences": 1,
|
56 |
+
"output_attentions": false,
|
57 |
+
"output_hidden_states": false,
|
58 |
+
"output_past": true,
|
59 |
+
"output_scores": false,
|
60 |
+
"pad_token_id": 1,
|
61 |
+
"position_embedding_type": "absolute",
|
62 |
+
"prefix": null,
|
63 |
+
"problem_type": null,
|
64 |
+
"pruned_heads": {},
|
65 |
+
"remove_invalid_values": false,
|
66 |
+
"repetition_penalty": 1.0,
|
67 |
+
"return_dict": true,
|
68 |
+
"return_dict_in_generate": false,
|
69 |
+
"sep_token_id": null,
|
70 |
+
"task_specific_params": null,
|
71 |
+
"temperature": 1.0,
|
72 |
+
"tie_encoder_decoder": false,
|
73 |
+
"tie_word_embeddings": true,
|
74 |
+
"tokenizer_class": null,
|
75 |
+
"top_k": 50,
|
76 |
+
"top_p": 1.0,
|
77 |
+
"torch_dtype": null,
|
78 |
+
"torchscript": false,
|
79 |
+
"transformers_version": "4.9.0.dev0",
|
80 |
+
"type_vocab_size": 2,
|
81 |
+
"use_bfloat16": false,
|
82 |
+
"use_cache": true,
|
83 |
+
"vocab_size": 31002
|
84 |
+
},
|
85 |
+
"transformers_version": null,
|
86 |
+
"vision_config": {
|
87 |
+
"_name_or_path": "",
|
88 |
+
"add_cross_attention": false,
|
89 |
+
"architectures": null,
|
90 |
+
"attention_dropout": 0.0,
|
91 |
+
"bad_words_ids": null,
|
92 |
+
"bos_token_id": null,
|
93 |
+
"chunk_size_feed_forward": 0,
|
94 |
+
"decoder_start_token_id": null,
|
95 |
+
"diversity_penalty": 0.0,
|
96 |
+
"do_sample": false,
|
97 |
+
"dropout": 0.0,
|
98 |
+
"early_stopping": false,
|
99 |
+
"encoder_no_repeat_ngram_size": 0,
|
100 |
+
"eos_token_id": null,
|
101 |
+
"finetuning_task": null,
|
102 |
+
"forced_bos_token_id": null,
|
103 |
+
"forced_eos_token_id": null,
|
104 |
+
"gradient_checkpointing": false,
|
105 |
+
"hidden_act": "quick_gelu",
|
106 |
+
"hidden_size": 768,
|
107 |
+
"id2label": {
|
108 |
+
"0": "LABEL_0",
|
109 |
+
"1": "LABEL_1"
|
110 |
+
},
|
111 |
+
"image_size": 224,
|
112 |
+
"initializer_factor": 1.0,
|
113 |
+
"initializer_range": 0.02,
|
114 |
+
"intermediate_size": 3072,
|
115 |
+
"is_decoder": false,
|
116 |
+
"is_encoder_decoder": false,
|
117 |
+
"label2id": {
|
118 |
+
"LABEL_0": 0,
|
119 |
+
"LABEL_1": 1
|
120 |
+
},
|
121 |
+
"layer_norm_eps": 1e-05,
|
122 |
+
"length_penalty": 1.0,
|
123 |
+
"max_length": 20,
|
124 |
+
"min_length": 0,
|
125 |
+
"model_type": "clip_vision_model",
|
126 |
+
"no_repeat_ngram_size": 0,
|
127 |
+
"num_attention_heads": 12,
|
128 |
+
"num_beam_groups": 1,
|
129 |
+
"num_beams": 1,
|
130 |
+
"num_hidden_layers": 12,
|
131 |
+
"num_return_sequences": 1,
|
132 |
+
"output_attentions": false,
|
133 |
+
"output_hidden_states": false,
|
134 |
+
"output_scores": false,
|
135 |
+
"pad_token_id": null,
|
136 |
+
"patch_size": 32,
|
137 |
+
"prefix": null,
|
138 |
+
"problem_type": null,
|
139 |
+
"pruned_heads": {},
|
140 |
+
"remove_invalid_values": false,
|
141 |
+
"repetition_penalty": 1.0,
|
142 |
+
"return_dict": true,
|
143 |
+
"return_dict_in_generate": false,
|
144 |
+
"sep_token_id": null,
|
145 |
+
"task_specific_params": null,
|
146 |
+
"temperature": 1.0,
|
147 |
+
"tie_encoder_decoder": false,
|
148 |
+
"tie_word_embeddings": true,
|
149 |
+
"tokenizer_class": null,
|
150 |
+
"top_k": 50,
|
151 |
+
"top_p": 1.0,
|
152 |
+
"torch_dtype": null,
|
153 |
+
"torchscript": false,
|
154 |
+
"transformers_version": "4.9.0.dev0",
|
155 |
+
"use_bfloat16": false
|
156 |
+
}
|
157 |
+
}
|
clip_spanish_1_percent/flax_model.msgpack
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29e4478aa3195ba626a7051a3d2a8d17bb540b4e68d8d75cca2d549104e586c2
|
3 |
+
size 792387416
|
configuration_hybrid_clip.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/home/eduardogonzalezponferrada/transformers/examples/research_projects/jax-projects/hybrid_clip/configuration_hybrid_clip.py
|
discard_incorrect_files.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torchvision.io import ImageReadMode, read_image
|
6 |
+
|
7 |
+
# SUPPORTED_EXTENSIONS = {'PNG', 'JPG', 'png', 'JPEG', 'jpg', 'jpeg'}
|
8 |
+
|
9 |
+
for split in ["train", "valid", "test"]:
|
10 |
+
with open(f"/home/{os.environ['USER']}/data/wit/prepared_dataset/{split}_dataset.json") as f:
|
11 |
+
examples = [json.loads(line) for line in f.readlines()]
|
12 |
+
|
13 |
+
supported_examples = []
|
14 |
+
for example in examples:
|
15 |
+
try:
|
16 |
+
image = read_image(example["image_path"], mode=ImageReadMode.RGB)
|
17 |
+
supported_examples.append(json.dumps(example, ensure_ascii=False))
|
18 |
+
except Exception as e:
|
19 |
+
print(f"Excluding file: {example['image_path']} due to error: {e}")
|
20 |
+
|
21 |
+
print(f"Total {split} examples: {len(supported_examples)}")
|
22 |
+
with open(f"/home/{os.environ['USER']}/data/wit/prepared_dataset/{split}_dataset_filtered.json", "w") as f:
|
23 |
+
f.write("\n".join(supported_examples))
|
modeling_hybrid_clip.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/home/eduardogonzalezponferrada/transformers/examples/research_projects/jax-projects/hybrid_clip/modeling_hybrid_clip.py
|
prepare_wit.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
import urllib.request
|
7 |
+
import urllib.error
|
8 |
+
|
9 |
+
import pandas as pd
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
def prepare_wit(tsv: str, language: str, output_dir: str, seed: int, train_proportion: float, valid_proportion: float, language_col: str="language", caption_col: str="caption_reference_description", url_col: str="image_url", pause=1.0, retries: int=5):
|
16 |
+
os.makedirs(output_dir, exist_ok=True)
|
17 |
+
df = pd.read_csv(tsv, sep="\t", engine="python")
|
18 |
+
df = df[(df["language"] == language) & (~df["caption_reference_description"].isnull())]
|
19 |
+
# Shuffle
|
20 |
+
df = df.sample(frac=1.0, random_state=seed)
|
21 |
+
lines = []
|
22 |
+
try:
|
23 |
+
with tqdm(total=len(df)) as pbar:
|
24 |
+
for i, row in tqdm(df.iterrows()):
|
25 |
+
url = row[url_col]
|
26 |
+
caption = row[caption_col]
|
27 |
+
# Trim image file names so that they are no longer than 100 characters
|
28 |
+
image_filename = url.split('/')[-1][-100:]
|
29 |
+
image_path = f"{output_dir}/{image_filename}"
|
30 |
+
for retry in range(retries):
|
31 |
+
try:
|
32 |
+
# Download file
|
33 |
+
urllib.request.urlretrieve(url, image_path)
|
34 |
+
lines.append(json.dumps({"image_path": image_path, "captions": [caption]}, ensure_ascii=False))
|
35 |
+
break
|
36 |
+
except urllib.error.HTTPError as e:
|
37 |
+
time.sleep(pause)
|
38 |
+
if retry == retries:
|
39 |
+
raise ValueError("Rate limit achieved:", e)
|
40 |
+
pbar.update(1)
|
41 |
+
# Save existing dataset, even upon failure
|
42 |
+
finally:
|
43 |
+
total_lines = len(lines)
|
44 |
+
train_lines = lines[:int(total_lines * train_proportion)]
|
45 |
+
valid_lines = lines[int(total_lines * train_proportion):int(total_lines * (train_proportion + valid_proportion))]
|
46 |
+
test_lines = lines[int(total_lines * (train_proportion + valid_proportion)):]
|
47 |
+
|
48 |
+
with open(f"{output_dir}/train_dataset.json", "w") as f:
|
49 |
+
f.write("\n".join(train_lines))
|
50 |
+
|
51 |
+
with open(f"{output_dir}/valid_dataset.json", "w") as f:
|
52 |
+
f.write("\n".join(valid_lines))
|
53 |
+
|
54 |
+
with open(f"{output_dir}/test_dataset.json", "w") as f:
|
55 |
+
f.write("\n".join(test_lines))
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
parser = argparse.ArgumentParser(description = "Download and prepare the WIT dataset")
|
59 |
+
parser.add_argument("--tsv", type=str, default=f"/home/{os.environ['USER']}/data/wit/wit_v1.train.all-1percent_sample.tsv")
|
60 |
+
parser.add_argument("--language", type=str, default="es")
|
61 |
+
parser.add_argument("--output_dir", type=str, default=f"/home/{os.environ['USER']}/data/wit/prepared_dataset")
|
62 |
+
parser.add_argument("--random_seed", type=int, default=0)
|
63 |
+
parser.add_argument("--train_proportion", type=float, default=0.8)
|
64 |
+
parser.add_argument("--valid_proportion", type=float, default=0.1)
|
65 |
+
|
66 |
+
args = parser.parse_args()
|
67 |
+
assert args.train_proportion + args.valid_proportion < 1.0, "The sum of train_proportion and valid_proportion has to be < 1.0"
|
68 |
+
prepare_wit(args.tsv, args.language, args.output_dir, args.random_seed, args.train_proportion, args.valid_proportion)
|
run-clip.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
HUB_TOKEN=`cat $HOME/.huggingface/token`
|
2 |
+
python run_hybrid_clip.py \
|
3 |
+
--output_dir "./output_dir" \
|
4 |
+
--text_model_name_or_path="dccuchile/bert-base-spanish-wwm-cased" \
|
5 |
+
--vision_model_name_or_path="openai/clip-vit-base-patch32" \
|
6 |
+
--tokenizer_name="dccuchile/bert-base-spanish-wwm-cased" \
|
7 |
+
--train_file="/home/${USER}/data/wit/prepared_dataset/train_dataset_filtered.json" \
|
8 |
+
--validation_file="/home/${USER}/data/wit/prepared_dataset/valid_dataset_filtered.json" \
|
9 |
+
--do_train --do_eval \
|
10 |
+
--num_train_epochs="40" \
|
11 |
+
--max_seq_length 96 \
|
12 |
+
--per_device_train_batch_size="64" \
|
13 |
+
--per_device_eval_batch_size="64" \
|
14 |
+
--learning_rate="5e-5" --warmup_steps="0" --weight_decay 0.1 \
|
15 |
+
--overwrite_output_dir \
|
16 |
+
--preprocessing_num_workers 32
|
17 |
+
#--push_to_hub
|
18 |
+
|
run_hybrid_clip.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
/home/eduardogonzalezponferrada/transformers/examples/research_projects/jax-projects/hybrid_clip/run_hybrid_clip.py
|
test_on_image.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import jax
|
2 |
+
import torch
|
3 |
+
from torchvision.io import ImageReadMode, read_image
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
|
6 |
+
from modeling_hybrid_clip import FlaxHybridCLIP
|
7 |
+
from run_hybrid_clip import Transform
|
8 |
+
|
9 |
+
model = FlaxHybridCLIP.from_pretrained("clip_spanish_1_percent")
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained("dccuchile/bert-base-spanish-wwm-cased")
|
11 |
+
|
12 |
+
def prepare_image(image_path):
|
13 |
+
image = read_image(image_path, mode=ImageReadMode.RGB)
|
14 |
+
preprocess = Transform(model.config.vision_config.image_size)
|
15 |
+
preprocess = torch.jit.script(preprocess)
|
16 |
+
preprocessed_image = preprocess(image)
|
17 |
+
pixel_values = torch.stack([preprocessed_image]).permute(0, 2, 3, 1).numpy()
|
18 |
+
return pixel_values
|
19 |
+
|
20 |
+
def prepare_text(text):
|
21 |
+
return tokenizer(text, return_tensors="np")
|
22 |
+
|
23 |
+
def run_inference(image_path, text):
|
24 |
+
pixel_values = prepare_image(image_path)
|
25 |
+
input_text = prepare_text(text)
|
26 |
+
model_output = model(input_text["input_ids"], pixel_values, attention_mask=input_text["attention_mask"], token_type_ids=input_text["token_type_ids"], train=False, return_dict=True)
|
27 |
+
logits = model_output["logits_per_image"]
|
28 |
+
score = jax.nn.sigmoid(logits)
|
29 |
+
return score
|
30 |
+
|
31 |
+
image_path = "/home/eduardogonzalezponferrada/data/wit/full_dataset/Casa_de_Cultura_%284%29.JPG"
|
32 |
+
text = "Patio interior de un edificio"
|
33 |
+
|
34 |
+
print(run_inference(image_path, text))
|