from datasets import load_dataset from tokenizers import ByteLevelBPETokenizer from pythainlp.tokenize import word_tokenize # load dataset dataset = load_dataset("oscar", "unshuffled_deduplicated_th", split="train") # Instantiate tokenizer tokenizer = ByteLevelBPETokenizer() def th_tokenize(text): result = " ".join(word_tokenize(text, engine="newmm", keep_whitespace=False)) return result def batch_iterator(batch_size=1000): for i in range(0, len(dataset), batch_size): yield [th_tokenize(text) for text in dataset[i : i + batch_size]["text"]] # Customized training tokenizer.train_from_iterator( batch_iterator(), vocab_size=50265, min_frequency=2, special_tokens=["", "", "", "", "",], ) # Save files to disk tokenizer.save(f"./tokenizer.json")