|
import streamlit as st |
|
import jax.numpy as jnp |
|
from transformers import AutoTokenizer |
|
from transformers.models.t5.modeling_flax_t5 import shift_tokens_right |
|
from t5_vae_flax_alt.src.t5_vae import FlaxT5VaeForAutoencoding |
|
|
|
|
|
st.title('T5-VAE') |
|
st.text(''' |
|
Try interpolating between lines of Python code using this T5-VAE. |
|
''') |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def get_model(): |
|
tokenizer = AutoTokenizer.from_pretrained("t5-base") |
|
model = FlaxT5VaeForAutoencoding.from_pretrained("flax-community/t5-vae-python") |
|
assert model.params['t5']['shared']['embedding'].shape[0] == len(tokenizer), "T5 Tokenizer doesn't match T5Vae embedding size." |
|
return model, tokenizer |
|
|
|
|
|
model, tokenizer = get_model() |
|
|
|
|
|
def add_decoder_input_ids(examples): |
|
arr_input_ids = jnp.array(examples["input_ids"]) |
|
pad = tokenizer.pad_token_id * jnp.ones((arr_input_ids.shape[0], 1), dtype=jnp.int32) |
|
arr_pad_input_ids = jnp.concatenate((arr_input_ids, pad), axis=1) |
|
examples['decoder_input_ids'] = shift_tokens_right(arr_pad_input_ids, tokenizer.pad_token_id, model.config.decoder_start_token_id) |
|
|
|
arr_attention_mask = jnp.array(examples['attention_mask']) |
|
ones = jnp.ones((arr_attention_mask.shape[0], 1), dtype=jnp.int32) |
|
examples['decoder_attention_mask'] = jnp.concatenate((ones, arr_attention_mask), axis=1) |
|
|
|
for k in ['decoder_input_ids', 'decoder_attention_mask']: |
|
examples[k] = examples[k].tolist() |
|
|
|
return examples |
|
|
|
|
|
def prepare_inputs(inputs): |
|
for k, v in inputs.items(): |
|
inputs[k] = jnp.array(v) |
|
return add_decoder_input_ids(inputs) |
|
|
|
|
|
def get_latent(text): |
|
return model(**prepare_inputs(tokenizer([text]))).latent_codes[0] |
|
|
|
|
|
def tokens_from_latent(latent_codes): |
|
model.config.is_encoder_decoder = True |
|
output_ids = model.generate( |
|
latent_codes=jnp.array([latent_codes]), |
|
bos_token_id=model.config.decoder_start_token_id, |
|
min_length=1, |
|
max_length=32, |
|
) |
|
return output_ids |
|
|
|
|
|
def slerp(ratio, t1, t2): |
|
''' |
|
Perform a spherical interpolation between 2 vectors. |
|
Most of the volume of a high-dimensional orange is in the skin, not the pulp. |
|
This also applies for multivariate Gaussian distributions. |
|
To that end we can interpolate between samples by following the surface of a n-dimensional sphere rather than a straight line. |
|
|
|
Args: |
|
ratio: Interpolation ratio. |
|
t1: Tensor1 |
|
t2: Tensor2 |
|
''' |
|
low_norm = t1 / jnp.linalg.norm(t1, axis=1, keepdims=True) |
|
high_norm = t2 / jnp.linalg.norm(t2, axis=1, keepdims=True) |
|
omega = jnp.arccos((low_norm * high_norm).sum(1)) |
|
so = jnp.sin(omega) |
|
res = (jnp.sin((1.0 - ratio) * omega) / so)[0] * t1 + (jnp.sin(ratio * omega) / so)[0] * t2 |
|
return res |
|
|
|
|
|
def decode(ratio, txt_1, txt_2): |
|
if not txt_1 or not txt_2: |
|
return '' |
|
lt_1, lt_2 = get_latent(txt_1), get_latent(txt_2) |
|
lt_new = slerp(ratio, lt_1, lt_2) |
|
tkns = tokens_from_latent(lt_new) |
|
return tokenizer.decode(tkns.sequences[0], skip_special_tokens=True) |
|
|
|
|
|
in_1 = st.text_input("A line of Python code.", "x = 1") |
|
in_2 = st.text_input("Another line of Python code.", "x = 9") |
|
r = st.slider('Interpolation Ratio') |
|
st.write(decode(r, in_1, in_2)) |
|
|