File size: 7,716 Bytes
f338d56
 
 
 
 
845642f
 
 
f338d56
 
 
dc74cb9
f338d56
 
 
 
dc74cb9
 
f338d56
dc74cb9
 
f338d56
dc74cb9
f338d56
3b81fb5
 
 
dc74cb9
 
f338d56
f082d66
 
dc74cb9
 
f082d66
 
dc74cb9
 
f338d56
3b81fb5
 
 
dc74cb9
 
f338d56
 
 
 
 
 
 
845642f
 
f338d56
 
 
 
 
 
 
dc74cb9
 
 
 
3b81fb5
dc74cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845642f
dc74cb9
 
 
 
f338d56
3b81fb5
 
 
845642f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f082d66
 
3b81fb5
 
f338d56
dc74cb9
 
 
 
 
 
 
 
3b81fb5
 
 
dc74cb9
845642f
dc74cb9
f338d56
845642f
f338d56
 
 
 
 
dc74cb9
 
 
 
 
f338d56
3b81fb5
 
 
f338d56
dc74cb9
 
 
f338d56
845642f
dc74cb9
845642f
f338d56
845642f
 
f338d56
845642f
 
dc74cb9
845642f
3b81fb5
 
 
845642f
 
 
 
 
 
 
 
 
 
 
f338d56
845642f
 
3b81fb5
 
 
 
 
 
 
 
 
06bcf58
3b81fb5
 
 
06bcf58
 
 
3b81fb5
06bcf58
 
 
 
 
 
 
 
 
 
 
 
3b81fb5
 
06bcf58
 
 
3b81fb5
06bcf58
 
3b81fb5
06bcf58
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import sys, os

current_path = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_path)

from transformers import FlaxGPT2LMHeadModel as Orig_FlaxGPT2LMHeadModel
from vit_gpt2.modeling_flax_gpt2 import FlaxGPT2LMHeadModel

# Main model -  ViTGPT2LM
from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration

# ViT - as encoder
from transformers import ViTFeatureExtractor
from PIL import Image
import requests
import numpy as np
import jax
import jax.numpy as jnp

# GPT2+LM - as decoder
from transformers import GPT2Tokenizer

max_length = 8

# ================================================================================
# Models preparation

vision_model_name = 'google/vit-base-patch16-224-in21k'
text_model_name = 'asi/gpt-fr-cased-small'

project_encoder = False

flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_vision_text_pretrained(
    vision_pretrained_model_name_or_path=vision_model_name,
    text_pretrained_model_name_or_path=text_model_name,
    project_encoder=project_encoder
)
model = flax_vit_gpt2_lm

# ================================================================================
# Inputs preparation

feature_extractor = ViTFeatureExtractor.from_pretrained(vision_model_name)
tokenizer = GPT2Tokenizer.from_pretrained(text_model_name)

# encoder data
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
# batch dim is added automatically
encoder_inputs = feature_extractor(images=image, return_tensors="jax")
pixel_values = encoder_inputs.pixel_values

print('=' * 60)
print(f'pixel_values.shape = {pixel_values.shape}')

# decoder data
sentence = 'mon chien est mignon'
# IMPORTANT: For training/evaluation/attention_mask/loss
sentence += ' ' + tokenizer.eos_token
# batch dim is added automatically
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
    labels = tokenizer(sentence, max_length=max_length, padding="max_length", truncation=True, return_tensors="np")


def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
    """
    Shift input ids one token to the right.
    """
    shifted_input_ids = jnp.roll(input_ids, 1, axis=-1)
    shifted_input_ids = jax.ops.index_update(shifted_input_ids, (..., 0), decoder_start_token_id)
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)

    return shifted_input_ids

decoder_input_ids = shift_tokens_right(
    jnp.array(labels["input_ids"]),
    model.config.text_config.pad_token_id,
    model.config.decoder_start_token_id
)
decoder_input_ids = np.asarray(decoder_input_ids)
# We need decoder_attention_mask so we can ignore pad tokens from loss
decoder_attention_mask = labels["attention_mask"]

print('=' * 60)
print(f'decoder_inputs = {decoder_input_ids}')
print(f'decoder_input_ids.shape = {decoder_input_ids.shape}')
print(f'decoder_attention_mask = {decoder_attention_mask}')
print(f'decoder_attention_mask.shape = {decoder_attention_mask.shape}')

# ================================================================================
# Check `FlaxGPT2LMHeadModel` has the same results in the new version (when no `encoder_outputs` is provided).

orig_gpt2_lm = Orig_FlaxGPT2LMHeadModel.from_pretrained(text_model_name)
gpt2_lm = FlaxGPT2LMHeadModel.from_pretrained(text_model_name)

# Generation!
num_beams = 1
gen_kwargs = {"max_length": 6, "num_beams": num_beams}

orig_gpt2_generated = orig_gpt2_lm.generate(decoder_input_ids[:, 0:3], **gen_kwargs)
gpt2_generated = gpt2_lm.generate(decoder_input_ids[:, 0:3], **gen_kwargs)

orig_token_ids = np.array(orig_gpt2_generated.sequences)[0]
token_ids = np.array(gpt2_generated.sequences)[0]

orig_caption = tokenizer.decode(orig_token_ids)
caption = tokenizer.decode(token_ids)

print('=' * 60)
print(f'orig. GPT2 generated token ids: {orig_token_ids}')
print(f'GPT2 generated token ids: {token_ids}')

print('=' * 60)
print(f'orig. GPT2 generated caption: {orig_caption}')
print(f'GPT2 generated caption: {caption}')

assert list(orig_token_ids) == list(token_ids)

# ================================================================================

# model data
model_inputs = {
    'pixel_values': pixel_values,
    'attention_mask': None,
    'decoder_input_ids': decoder_input_ids,
    'decoder_attention_mask': decoder_attention_mask,
    'decoder_position_ids': None,
}

# ================================================================================
# Check `model.__call__()`

# Model call
model_outputs = model(**model_inputs)
logits = model_outputs[0]
preds = np.argmax(logits, axis=-1)

print('=' * 60)
print('Flax: Vit-GPT2-LM')
print('predicted token ids:')
print(preds)

# encoder_last_hidden_state = model_outputs['encoder_last_hidden_state']
# print(encoder_last_hidden_state)
# encoder_kwargs = {}
# encoder_outputs = flax_vit_gpt2_lm.encode(pixel_values, return_dict=True, **encoder_kwargs)
# print(encoder_outputs['last_hidden_state'])

# ================================================================================
# Check generation

# Generation!
num_beams = 1
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}

batch = {'pixel_values': pixel_values}
generated = model.generate(batch['pixel_values'], **gen_kwargs)
token_ids = np.array(generated.sequences)[0]

print('=' * 60)
print(f'generated token ids: {token_ids}')

caption = tokenizer.decode(token_ids)

print('=' * 60)
print(f'generated caption: {caption}')

# ================================================================================
# Check save & load

# save
os.makedirs('./model/', exist_ok=True)
model.save_pretrained(save_directory='./model/')

# load
_model = FlaxViTGPT2LMForConditionalGeneration.from_pretrained('./model/')

# check if the result is the same as before
_generated = _model.generate(batch['pixel_values'], **gen_kwargs)
_token_ids = np.array(_generated.sequences)[0]

print('=' * 60)
print(f'new generated token ids: {_token_ids}')
print(f'token_ids == new_token_ids: {token_ids == _token_ids}')

# ================================================================================
# Check PyTorch version's output - it should be the same as above

import torch
from transformers import ViTModel, GPT2Config, GPT2LMHeadModel

vision_model_pt = ViTModel.from_pretrained(vision_model_name)
config = GPT2Config.from_pretrained(text_model_name)
# config.is_encoder_decoder = True
config.add_cross_attention = True
text_model_pt = GPT2LMHeadModel.from_pretrained(text_model_name, config=config)

encoder_pt_inputs = feature_extractor(images=image, return_tensors="pt")
encoder_pt_outputs = vision_model_pt(**encoder_pt_inputs)
encoder_hidden_states = encoder_pt_outputs.last_hidden_state

# model data
text_model_pt_inputs = {
    'input_ids': torch.tensor(decoder_input_ids, dtype=torch.int32),
    'attention_mask': torch.tensor(decoder_attention_mask, dtype=torch.int32),
    'position_ids': None,
    'encoder_hidden_states': encoder_hidden_states
}

# Model call
text_model_pt_outputs = text_model_pt(**text_model_pt_inputs)
logits = text_model_pt_outputs[0]
preds = np.argmax(logits.detach().numpy(), axis=-1)

print('=' * 60)
print('PyTroch: Vit --> GPT2-LM')
print('predicted token ids:')
print(preds)

#generated = text_model_pt.generate(encoder_outputs=vision_model_pt_outputs, **gen_kwargs)
#token_ids = np.array(generated.sequences)[0]

#print('=' * 60)
#print(f'Pytorch\'s GPT2 LM generated token ids: {token_ids}')

#caption = tokenizer.decode(token_ids)

#print('=' * 60)
#print(f'Pytorch\'s GPT2 LM generated caption: {caption}')