|
import sys, os
|
|
|
|
current_path = os.path.dirname(os.path.abspath(__file__))
|
|
sys.path.append(current_path)
|
|
|
|
|
|
from transformers import ViTFeatureExtractor
|
|
from PIL import Image
|
|
import requests
|
|
import numpy as np
|
|
|
|
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
|
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
|
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
|
|
encoder_inputs = feature_extractor(images=image, return_tensors="jax")
|
|
pixel_values = encoder_inputs.pixel_values
|
|
|
|
|
|
from transformers import ViTFeatureExtractor, GPT2Tokenizer
|
|
|
|
name = 'asi/gpt-fr-cased-small'
|
|
tokenizer = GPT2Tokenizer.from_pretrained(name)
|
|
decoder_inputs = tokenizer("mon chien est mignon", return_tensors="jax")
|
|
|
|
inputs = dict(decoder_inputs)
|
|
inputs['pixel_values'] = pixel_values
|
|
print(inputs)
|
|
|
|
|
|
from vit_gpt2.modeling_flax_vit_gpt2 import FlaxViTGPT2ForConditionalGeneration
|
|
flax_vit_gpt2 = FlaxViTGPT2ForConditionalGeneration.from_vit_gpt2_pretrained(
|
|
'google/vit-base-patch16-224-in21k', 'asi/gpt-fr-cased-small'
|
|
)
|
|
logits = flax_vit_gpt2(**inputs)[0]
|
|
preds = np.argmax(logits, axis=-1)
|
|
print('=' * 60)
|
|
print('Flax: Vit + modified GPT2 + LM')
|
|
print(preds)
|
|
|
|
del flax_vit_gpt2
|
|
|
|
|
|
from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration
|
|
flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_vit_gpt2_pretrained(
|
|
'google/vit-base-patch16-224-in21k', 'asi/gpt-fr-cased-small'
|
|
)
|
|
|
|
logits = flax_vit_gpt2_lm(**inputs)[0]
|
|
preds = np.argmax(logits, axis=-1)
|
|
print('=' * 60)
|
|
print('Flax: Vit + modified GPT2LM')
|
|
print(preds)
|
|
|
|
del flax_vit_gpt2_lm
|
|
|
|
|
|
import torch
|
|
from transformers import ViTModel, GPT2Config, GPT2LMHeadModel
|
|
|
|
vit_model_pt = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
|
|
encoder_inputs = feature_extractor(images=image, return_tensors="pt")
|
|
vit_outputs = vit_model_pt(**encoder_inputs)
|
|
vit_last_hidden_states = vit_outputs.last_hidden_state
|
|
|
|
del vit_model_pt
|
|
|
|
inputs_pt = tokenizer("mon chien est mignon", return_tensors="pt")
|
|
inputs_pt = dict(inputs_pt)
|
|
inputs_pt['encoder_hidden_states'] = vit_last_hidden_states
|
|
|
|
config = GPT2Config.from_pretrained('asi/gpt-fr-cased-small')
|
|
config.add_cross_attention = True
|
|
gpt2_model_pt = GPT2LMHeadModel.from_pretrained('asi/gpt-fr-cased-small', config=config)
|
|
|
|
gp2lm_outputs = gpt2_model_pt(**inputs_pt)
|
|
logits_pt = gp2lm_outputs.logits
|
|
preds_pt = torch.argmax(logits_pt, dim=-1).cpu().detach().numpy()
|
|
print('=' * 60)
|
|
print('Pytorch: Vit + unmodified GPT2LM')
|
|
print(preds_pt)
|
|
|
|
del gpt2_model_pt
|
|
|