|
import sys, os |
|
|
|
current_path = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(current_path) |
|
|
|
|
|
from transformers import ViTFeatureExtractor |
|
from PIL import Image |
|
import requests |
|
import numpy as np |
|
|
|
url = 'http://images.cocodataset.org/val2017/000000039769.jpg' |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k') |
|
encoder_inputs = feature_extractor(images=image, return_tensors="jax") |
|
pixel_values = encoder_inputs.pixel_values |
|
|
|
|
|
from transformers import ViTFeatureExtractor, GPT2Tokenizer |
|
|
|
name = 'asi/gpt-fr-cased-small' |
|
tokenizer = GPT2Tokenizer.from_pretrained(name) |
|
decoder_inputs = tokenizer("mon chien est mignon", return_tensors="jax") |
|
|
|
inputs = dict(decoder_inputs) |
|
inputs['pixel_values'] = pixel_values |
|
print(inputs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration |
|
flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_pretrained( |
|
'.', |
|
) |
|
|
|
logits = flax_vit_gpt2_lm(**inputs)[0] |
|
preds = np.argmax(logits, axis=-1) |
|
print('=' * 60) |
|
print('Flax: Vit + modified GPT2LM') |
|
print(preds) |
|
|
|
|
|
|
|
del flax_vit_gpt2_lm |
|
|