|
import sys, os |
|
|
|
current_path = os.path.dirname(os.path.abspath(__file__)) |
|
sys.path.append(current_path) |
|
|
|
|
|
from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration |
|
|
|
|
|
from transformers import ViTFeatureExtractor |
|
from PIL import Image |
|
import requests |
|
import numpy as np |
|
|
|
|
|
from transformers import ViTFeatureExtractor, GPT2Tokenizer |
|
|
|
model_name_or_path = './outputs/ckpt_2/' |
|
flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_pretrained(model_name_or_path) |
|
|
|
vit_model_name = 'google/vit-base-patch16-224-in21k' |
|
feature_extractor = ViTFeatureExtractor.from_pretrained(vit_model_name) |
|
|
|
gpt2_model_name = 'asi/gpt-fr-cased-small' |
|
tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name) |
|
|
|
max_length = 32 |
|
num_beams = 16 |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} |
|
|
|
|
|
|
|
url = 'http://images.cocodataset.org/val2017/000000039769.jpg' |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
encoder_inputs = feature_extractor(images=image, return_tensors="jax") |
|
pixel_values = encoder_inputs.pixel_values |
|
print(f'pixel_values.shape = {pixel_values.shape}') |
|
|
|
|
|
sentence = 'mon chien est mignon' |
|
|
|
sentence += ' ' + tokenizer.eos_token |
|
|
|
decoder_inputs = tokenizer(sentence, return_tensors="jax") |
|
print(decoder_inputs) |
|
print(f'input_ids.shape = {decoder_inputs.input_ids.shape}') |
|
|
|
|
|
inputs = dict(decoder_inputs) |
|
inputs['pixel_values'] = pixel_values |
|
|
|
|
|
logits = flax_vit_gpt2_lm(**inputs)[0] |
|
preds = np.argmax(logits, axis=-1) |
|
print('=' * 60) |
|
print('Flax: Vit-GPT2-LM') |
|
print('predicted token ids:') |
|
print(preds) |
|
print('=' * 60) |
|
|
|
|
|
|
|
batch = {'pixel_values': pixel_values} |
|
generation = flax_vit_gpt2_lm.generate(batch['pixel_values'], **gen_kwargs) |
|
print('generation:') |
|
print(generation) |
|
print('=' * 60) |
|
|
|
token_ids = np.array(generation.sequences)[0] |
|
caption = tokenizer.decode(token_ids) |
|
print(f'token_ids: {token_ids}') |
|
print(f'caption: {caption}') |
|
print('=' * 60) |
|
|