import sys, os current_path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(current_path) # jax import jax # Main model - ViTGPT2LM from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration # Vit - as encoder from transformers import ViTFeatureExtractor from PIL import Image import requests import numpy as np # GPT2 / GPT2LM - as decoder from transformers import ViTFeatureExtractor, GPT2Tokenizer model_name_or_path = './outputs/ckpt_2/' flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_pretrained(model_name_or_path) vit_model_name = 'google/vit-base-patch16-224-in21k' feature_extractor = ViTFeatureExtractor.from_pretrained(vit_model_name) gpt2_model_name = 'asi/gpt-fr-cased-small' tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name) max_length = 64 num_beams = 16 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} @jax.jit def predict_fn(pixel_values): return flax_vit_gpt2_lm.generate(pixel_values, **gen_kwargs) def predict(image, pxs=None): # batch dim is added automatically encoder_inputs = feature_extractor(images=image, return_tensors="jax") pixel_values = encoder_inputs.pixel_values if pxs is not None: pixel_values = pxs # generation generation = predict_fn(pixel_values) token_ids = np.array(generation.sequences)[0] caption = tokenizer.decode(token_ids) return caption, token_ids if __name__ == '__main__': from datetime import datetime idx = 11 url = f'./wit_data_dir/train/images/{idx}.jpg' image = Image.open(url) encoder_inputs = feature_extractor(images=image, return_tensors="np") pv1 = encoder_inputs.pixel_values pv2 = np.load(f'./wit_data_dir/train/numpy/{idx}.npy') print(np.sum(np.abs(pv1 - pv2))) s = datetime.now() caption, token_ids = predict(image, pxs=pv2) e = datetime.now() e = (e - s).total_seconds() print(e) print(f'token_ids: {token_ids}') print(f'caption: {caption}') for _ in range(1): s = datetime.now() caption, token_ids = predict(image, pxs=None) e = datetime.now() e = (e - s).total_seconds() print(e) print('-' * 20) print(f'token_ids: {token_ids}') print(f'caption: {caption}')