import sys, os current_path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(current_path) # Main model - ViTGPT2LM from vit_gpt2.modeling_flax_vit_gpt2_lm import FlaxViTGPT2LMForConditionalGeneration # Vit - as encoder from transformers import ViTFeatureExtractor from PIL import Image import requests import numpy as np # GPT2 / GPT2LM - as decoder from transformers import ViTFeatureExtractor, GPT2Tokenizer model_name_or_path = './outputs/ckpt_2/' flax_vit_gpt2_lm = FlaxViTGPT2LMForConditionalGeneration.from_pretrained(model_name_or_path) vit_model_name = 'google/vit-base-patch16-224-in21k' feature_extractor = ViTFeatureExtractor.from_pretrained(vit_model_name) gpt2_model_name = 'asi/gpt-fr-cased-small' tokenizer = GPT2Tokenizer.from_pretrained(gpt2_model_name) max_length = 32 num_beams = 16 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} # encoder data url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) # batch dim is added automatically encoder_inputs = feature_extractor(images=image, return_tensors="jax") pixel_values = encoder_inputs.pixel_values print(f'pixel_values.shape = {pixel_values.shape}') # decoder data sentence = 'mon chien est mignon' # IMPORTANT: For training/evaluation/attention_mask/loss sentence += ' ' + tokenizer.eos_token # batch dim is added automatically decoder_inputs = tokenizer(sentence, return_tensors="jax") print(decoder_inputs) print(f'input_ids.shape = {decoder_inputs.input_ids.shape}') # model data inputs = dict(decoder_inputs) inputs['pixel_values'] = pixel_values logits = flax_vit_gpt2_lm(**inputs)[0] preds = np.argmax(logits, axis=-1) print('=' * 60) print('Flax: Vit-GPT2-LM') print('predicted token ids:') print(preds) print('=' * 60) # Generation! batch = {'pixel_values': pixel_values} generation = flax_vit_gpt2_lm.generate(batch['pixel_values'], **gen_kwargs) print('generation:') print(generation) print('=' * 60) token_ids = np.array(generation.sequences)[0] caption = tokenizer.decode(token_ids) print(f'token_ids: {token_ids}') print(f'caption: {caption}') print('=' * 60)