---
library_name: transformers
license: gemma
base_model: google/gemma-2-2b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: gemma-2-2b-magpie-gemma2-9b
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
base_model: google/gemma-2-2b
model_type: Gemma2ForCausalLM
tokenizer_type: AutoTokenizer
chat_template: gemma
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: flydust/Magpie-100k-Gemma2-9B
type: sharegpt
chat_template: gemma
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: axolotl_out/gemma-2-2b-magpie-gemma2-9b
sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: gemma-2-2b-magpie-gemma2-9b
wandb_log_model:
hub_model_id: flydust/gemma-2-2b-magpie-gemma2-9b
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
# Disable flash attention
# flash_attention: false
# sdp_attention: falses
eager_attention: true
warmup_ratio: 0.1
evals_per_epoch: 5
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
# gemma-2-2b-magpie-gemma2-9b
This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6998
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 79
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 4.7852 | 0.0023 | 1 | 1.1984 |
| 0.8091 | 0.2011 | 86 | 0.8370 |
| 0.7305 | 0.4022 | 172 | 0.7686 |
| 0.6761 | 0.6033 | 258 | 0.7394 |
| 0.6618 | 0.8044 | 344 | 0.7141 |
| 0.6197 | 1.0056 | 430 | 0.6983 |
| 0.5014 | 1.1932 | 516 | 0.7058 |
| 0.4924 | 1.3943 | 602 | 0.7018 |
| 0.4887 | 1.5954 | 688 | 0.6997 |
| 0.4696 | 1.7966 | 774 | 0.6998 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1