--- library_name: transformers license: gemma base_model: google/gemma-2-2b tags: - axolotl - generated_from_trainer model-index: - name: gemma-2-2b-magpie-gemma2-9b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: google/gemma-2-2b model_type: Gemma2ForCausalLM tokenizer_type: AutoTokenizer chat_template: gemma load_in_8bit: false load_in_4bit: false strict: false datasets: - path: flydust/Magpie-100k-Gemma2-9B type: sharegpt chat_template: gemma dataset_prepared_path: last_run_prepared val_set_size: 0.001 output_dir: axolotl_out/gemma-2-2b-magpie-gemma2-9b sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true wandb_project: SynDa wandb_entity: wandb_watch: wandb_name: gemma-2-2b-magpie-gemma2-9b wandb_log_model: hub_model_id: flydust/gemma-2-2b-magpie-gemma2-9b gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: true fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: logging_steps: 1 xformers_attention: # Disable flash attention # flash_attention: false # sdp_attention: falses eager_attention: true warmup_ratio: 0.1 evals_per_epoch: 5 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# gemma-2-2b-magpie-gemma2-9b This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 79 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 4.7852 | 0.0023 | 1 | 1.1984 | | 0.8091 | 0.2011 | 86 | 0.8370 | | 0.7305 | 0.4022 | 172 | 0.7686 | | 0.6761 | 0.6033 | 258 | 0.7394 | | 0.6618 | 0.8044 | 344 | 0.7141 | | 0.6197 | 1.0056 | 430 | 0.6983 | | 0.5014 | 1.1932 | 516 | 0.7058 | | 0.4924 | 1.3943 | 602 | 0.7018 | | 0.4887 | 1.5954 | 688 | 0.6997 | | 0.4696 | 1.7966 | 774 | 0.6998 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1