ppo-LunarLander-v2 / config.json
frahman's picture
Upload PPO LunarLander-v2 trained agent
3d57cc6 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x783e77d5b130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x783e77d5b1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x783e77d5b250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x783e77d5b2e0>", "_build": "<function ActorCriticPolicy._build at 0x783e77d5b370>", "forward": "<function ActorCriticPolicy.forward at 0x783e77d5b400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x783e77d5b490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x783e77d5b520>", "_predict": "<function ActorCriticPolicy._predict at 0x783e77d5b5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x783e77d5b640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x783e77d5b6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x783e77d5b760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x783e77d648c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 39328, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707237938960443437, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOY+kr2QI0E/BgmZPcqBzb4vBgy+NoKhPAAAAAAAAAAAzbCpO3uejLrKHjw1HDnmMFNMjTqzKU+0AACAPwAAgD8zy7m8ug69P3SUrb0T/ju+QbrAPLZkwrwAAAAAAAAAADOGybyZKEM+sBM5vbyzh74eXNE9TWravQAAAAAAAAAAs19XvSmAQrqag0u6gNEZtsJQW7oFenA5AACAPwAAgD8zM9s5XEIPvIJj4bw3iP88f4tlPUPe0L0AAIA/AACAP5qoqbwpHBO4WfEyOd51WzJbl5W7pf9YuAAAgD8AAIA/Zp+VvbiJ/z5r5YY+XVPrvuPsVT0xgRI+AAAAAAAAAADAQJg98/ewPjDv7j3av5y+gAL9PeuPcrwAAAAAAAAAAEAJ5z0i5WA+jeUNvsx0Tb57POs8NmQ8PQAAAAAAAAAAAFelPKTYd7sxNjW9A4hMPXhSmjwG0Ci+AACAPwAAgD9AYeS9/X6yPqogsD7BkNK+u3kaPst1Yz4AAAAAAAAAAGAiKT6g5as+pmuCvkN8OL4KjkG9BVt+vQAAAAAAAAAAZmdPvWjSxj5KyjU+osS9vnwLjj3TzEi6AAAAAAAAAAATzGE+4RS0PjZWBr6mX3O+hDzJPd+Zgr0AAAAAAAAAALMYXz4Xp1E/TiSRPmmFIb8ejpY+rmq8PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.967232, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHIBoISlFc+MAWyUTSMBjAF0lEdAmK8WPtD2J3V9lChoBkdAbMA7wrlNlGgHS+hoCEdAmK8naakRBnV9lChoBkdAcgwcUM5OrWgHTQsBaAhHQJivNXA/LTx1fZQoaAZHQHF5fP1L8JloB0vwaAhHQJivOHbh3q11fZQoaAZHQHIJUxZdOZdoB01kAWgIR0CYr8BcAzYVdX2UKGgGR0Bw1kIKMNtqaAdNJgFoCEdAmLCxrvb48HV9lChoBkdAcquiobXHzmgHTT8BaAhHQJixb8WKuSx1fZQoaAZHQEbGYE4ecQRoB0vjaAhHQJiy52jfvWp1fZQoaAZHQHI/Fiay8jBoB0vQaAhHQJi0Gqm0mdB1fZQoaAZHQHFHl4TsY2toB0v8aAhHQJi0P7Gecx11fZQoaAZHQEEdjQRf4RFoB0vKaAhHQJi0V29tdiV1fZQoaAZHQHBVukpI+W5oB0vzaAhHQJi0hy/9Hc11fZQoaAZHQHBRKBI4EOloB00hAWgIR0CYtXdfLLZBdX2UKGgGR0BzQkV2zOX3aAdL8mgIR0CYtieYD1XedX2UKGgGR0ByjvTpgTh6aAdNCgFoCEdAmLZFEiMYM3V9lChoBkdAbnkrGR3eN2gHS/ZoCEdAmLaEP+XJHXV9lChoBkdAcwckKu0TlGgHTRQBaAhHQJjIQWWQfZF1fZQoaAZHQHGL7Ub1h9doB0vtaAhHQJjIg6dUbUB1fZQoaAZHQHAB67yxzJZoB00NAWgIR0CYyJj3225QdX2UKGgGR0Bun1T72tdSaAdNWgFoCEdAmMj4ZhrnDHV9lChoBkdAcUcCTlkpZ2gHTQIBaAhHQJjJ/0mMOwx1fZQoaAZHQHF0BPCVKPJoB01XAWgIR0CYymNyo4uLdX2UKGgGR0BzIT8YQ8OkaAdNAQFoCEdAmMqw13t8eHV9lChoBkdAccqAYpDu0GgHS9JoCEdAmMvYoqkM1HV9lChoBkdAcZtyBClabGgHS/1oCEdAmMwJuVHFxXV9lChoBkdAb0usNDtw72gHS/RoCEdAmMyh60IC2nV9lChoBkdAcr92G7Bfr2gHTRABaAhHQJjNmmtQsPJ1fZQoaAZHQG+tFXzUZvVoB0v7aAhHQJjN0QarFOx1fZQoaAZHQHAxcEmplz5oB00VAWgIR0CYzfM4cWCVdX2UKGgGR0ByHEdeY2KmaAdL8mgIR0CYzhSSeRPodX2UKGgGR0By5E9lmOENaAdL3GgIR0CYzk5QP7N0dX2UKGgGR0BxFOxNZeRgaAdNFgFoCEdAmM8qUFB6bHV9lChoBkdAb9YvllsguGgHTQYBaAhHQJjP/3Zf2K51fZQoaAZHQHE1bR4QjD9oB00rAWgIR0CY0HMMqjJudX2UKGgGR0BRvDKxLTQWaAdLnmgIR0CY0HHrQgLadX2UKGgGR0Bw1ix2St/4aAdNPQFoCEdAmNCAMYuTR3V9lChoBkdAbbRwkPczqWgHS/VoCEdAmNCvKlpGnXV9lChoBkdAbkIFINEw4GgHS+1oCEdAmNE3ai9Iw3V9lChoBkdATdEuBczIm2gHS8xoCEdAmNHNKujh1nV9lChoBkdAcXgWJaaCtmgHTToBaAhHQJjS7vkRzzV1fZQoaAZHQG/Qu/1xsEdoB02vAWgIR0CY07fJFLFodX2UKGgGR0BuqwaYNRWMaAdL3WgIR0CY08BU70WedX2UKGgGR0BxVjAeq7yyaAdNHQFoCEdAmNSjd1uBMHV9lChoBkdAcuB7CzkZJmgHTQgBaAhHQJjVP8sMAm11fZQoaAZHQHCJz2alUIdoB0vraAhHQJjVup++dsl1fZQoaAZHQHJNw4GUwBZoB00YAWgIR0CY1i5ylvZRdX2UKGgGR0BzJqSV4X41aAdNNQFoCEdAmNaU12q1gHV9lChoBkdAcQ6FEy+HrWgHTU4BaAhHQJjXpDu0CzV1fZQoaAZHQHMTFGG21D1oB0v7aAhHQJjXsFaB7NV1fZQoaAZHQHFUEoWpIc1oB00FAWgIR0CY1+vpQk5ZdX2UKGgGR0BuqNShrWRSaAdNDwFoCEdAmNg0JrtVrHV9lChoBkdAcyGBomG/OGgHS9toCEdAmNg7ZJ04i3V9lChoBkdAb/co3Jgb62gHTQcBaAhHQJjYP1SOzY51fZQoaAZHQHIQIWtU4rBoB003AWgIR0CY2MzN2TxHdX2UKGgGR0Bv6sZ1mrbQaAdNGwFoCEdAmNk7Cm/Fi3V9lChoBkdAcE3SXMQmNWgHS9doCEdAmNnMGHHmzXV9lChoBkdAbtKueSSvDGgHTQIBaAhHQJjaJ5xBE8d1fZQoaAZHQHHDCBClabFoB00kAWgIR0CY27pxm03PdX2UKGgGR0BxvPOmixmkaAdNJQFoCEdAmNzCZfD1oXV9lChoBkdAb0rEnb7CSGgHS/5oCEdAmN0QLZzxPXV9lChoBkdAbjquK4x1xWgHS/FoCEdAmN0P2saKk3V9lChoBkdAcdDwNsnAqWgHTRwBaAhHQJjdIfA9FF51fZQoaAZHQHD7EsvqTr5oB00PAWgIR0CY3SZxaPjodX2UKGgGR0Bx+5GnXNC7aAdL1GgIR0CY3WnU2DQJdX2UKGgGR0BxpbDk2gnMaAdNBAFoCEdAmN78Djin53V9lChoBkdAcZI/YraufWgHTTUBaAhHQJjf2yPdVNp1fZQoaAZHQHFJ7XxvvSdoB01FAWgIR0CY4EizcAR1dX2UKGgGR0Bx74gW8AaOaAdNRgFoCEdAmODuJk5IYnV9lChoBkdAcVLacI7eVWgHTQEBaAhHQJjhSxzJZGN1fZQoaAZHQHD6IkZ75VRoB00qAWgIR0CY4Vs6q815dX2UKGgGR0Bu3zuMMqjKaAdNJQFoCEdAmOHjdDYywnV9lChoBkdAce2syBTXKGgHTVcBaAhHQJjiIo/iYLN1fZQoaAZHQHLTRN7BwddoB01+AWgIR0CY4n6zmfXgdX2UKGgGR0BuTqk0rK/3aAdL8WgIR0CY46OjIq9XdX2UKGgGR0BwINYoy9EkaAdL52gIR0CY46S4OMESdX2UKGgGR0BwLaWu5jH5aAdNFgFoCEdAmOO4/Vy3kXV9lChoBkdAc3rs67ulXWgHS+5oCEdAmOP5da+vhnV9lChoBkdAbkYt4iX6ZmgHS/RoCEdAmOQY24uscXV9lChoBkdAcZbHNX5nDmgHTRgBaAhHQJj3brAxi5N1fZQoaAZHQG3kjh1klNVoB007AWgIR0CY+BLmITGpdX2UKGgGR0BwHCsS00FbaAdL12gIR0CY+HQFcIJJdX2UKGgGR0BxtwrFwT/RaAdL6mgIR0CY+JEytV7ydX2UKGgGR0BxHamzjWCmaAdNJAFoCEdAmPlMI7eVLXV9lChoBkdAcV/C5mRNh2gHS+1oCEdAmPnjLwF1S3V9lChoBkdAchI8ifQKKGgHS/toCEdAmPpOFxn3+XV9lChoBkdAcD6OCoS+QGgHTREBaAhHQJj6gjxCpm51fZQoaAZHQHFXvV7Qb+9oB0vkaAhHQJj6ySX+l0p1fZQoaAZHQHLIG8Empl1oB00CAWgIR0CY+vvNNahYdX2UKGgGR0BwHMjt5UtJaAdNEgFoCEdAmPuTynUDuHV9lChoBkdAcWNnV5KODWgHTSUBaAhHQJj9nra/RE51fZQoaAZHQHGpKg7HQyBoB00hAWgIR0CY/bh7VrhzdX2UKGgGR0BymwVVPva2aAdNJQFoCEdAmP3x3A2ycHV9lChoBkdAb+hRJmNBGGgHS/doCEdAmP4OsgdOqXV9lChoBkdAcLvKyfL9uWgHTTwBaAhHQJj+OMl1KXh1fZQoaAZHQHJ3dxQzk6toB01GAWgIR0CY/nYcvM8pdX2UKGgGR0BwurVJ+UhWaAdL8GgIR0CY/npXp4bCdX2UKGgGR0BylWuZCv5haAdL3mgIR0CY/oHVPN3XdX2UKGgGR0Bx9fbAUL2IaAdL/2gIR0CY/ytTUAktdX2UKGgGR0BwWtcE/0NCaAdL+2gIR0CY/9VxjriVdX2UKGgGR0BwMK/bj94vaAdL/WgIR0CZAG7ojfNzdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}