|
import torch |
|
from PIL import Image |
|
import base64 |
|
from io import BytesIO |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
class EndpointHandler: |
|
def __init__(self, path="/repository"): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
self.model = AutoModel.from_pretrained( |
|
path, |
|
trust_remote_code=True, |
|
attn_implementation='sdpa', |
|
torch_dtype=torch.bfloat16 if self.device.type == "cuda" else torch.float32, |
|
).to(self.device) |
|
self.model.eval() |
|
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
path, |
|
trust_remote_code=True, |
|
) |
|
|
|
def __call__(self, data): |
|
|
|
image_data = data.get("inputs", {}).get("image", "") |
|
text_prompt = data.get("inputs", {}).get("text", "") |
|
|
|
if not image_data or not text_prompt: |
|
return {"error": "Both 'image' and 'text' must be provided in the input data."} |
|
|
|
|
|
try: |
|
image_bytes = base64.b64decode(image_data) |
|
image = Image.open(BytesIO(image_bytes)).convert("RGB") |
|
except Exception as e: |
|
return {"error": f"Failed to process image data: {e}"} |
|
|
|
|
|
msgs = [{'role': 'user', 'content': [image, text_prompt]}] |
|
|
|
|
|
with torch.no_grad(): |
|
res = self.model.chat( |
|
image=None, |
|
msgs=msgs, |
|
tokenizer=self.tokenizer, |
|
sampling=True, |
|
temperature=0.7, |
|
top_p=0.95, |
|
max_length=2000, |
|
) |
|
|
|
|
|
output_text = res |
|
|
|
return {"generated_text": output_text} |