--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: test-ner results: [] --- [Visualize in Weights & Biases](https://wandb.ai/fredjaoko123-optistock-co-ke/huggingface/runs/cqpagizt) # test-ner This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1608 - Precision: 0.8335 - Recall: 0.8535 - F1: 0.8434 - Accuracy: 0.9650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1261 | 1.0 | 1274 | 0.1797 | 0.8049 | 0.8044 | 0.8047 | 0.9571 | | 0.069 | 2.0 | 2548 | 0.1500 | 0.8278 | 0.8303 | 0.8290 | 0.9646 | | 0.0465 | 3.0 | 3822 | 0.1608 | 0.8335 | 0.8535 | 0.8434 | 0.9650 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1