--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9546181527389045 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1631 - Accuracy: 0.9546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4463 | 1.0 | 51 | 0.3232 | 0.9166 | | 0.2061 | 2.0 | 102 | 0.1659 | 0.9398 | | 0.1795 | 3.0 | 153 | 0.2043 | 0.9192 | | 0.1356 | 4.0 | 204 | 0.1204 | 0.9542 | | 0.1193 | 5.0 | 255 | 0.1357 | 0.9454 | | 0.1054 | 6.0 | 306 | 0.1197 | 0.9516 | | 0.0974 | 7.0 | 357 | 0.1081 | 0.9586 | | 0.092 | 8.0 | 408 | 0.1220 | 0.9532 | | 0.0601 | 9.0 | 459 | 0.1587 | 0.9466 | | 0.0639 | 10.0 | 510 | 0.1676 | 0.9440 | | 0.072 | 11.0 | 561 | 0.1058 | 0.9618 | | 0.0606 | 12.0 | 612 | 0.1061 | 0.9634 | | 0.0572 | 13.0 | 663 | 0.1375 | 0.9552 | | 0.0563 | 14.0 | 714 | 0.1377 | 0.9548 | | 0.0413 | 15.0 | 765 | 0.1823 | 0.9470 | | 0.0361 | 16.0 | 816 | 0.0992 | 0.9674 | | 0.0471 | 17.0 | 867 | 0.1508 | 0.9550 | | 0.04 | 18.0 | 918 | 0.1700 | 0.9506 | | 0.0417 | 19.0 | 969 | 0.1760 | 0.9454 | | 0.0238 | 20.0 | 1020 | 0.1311 | 0.9600 | | 0.0319 | 21.0 | 1071 | 0.1502 | 0.9562 | | 0.0328 | 22.0 | 1122 | 0.1843 | 0.9484 | | 0.0363 | 23.0 | 1173 | 0.1473 | 0.9558 | | 0.0385 | 24.0 | 1224 | 0.1625 | 0.9516 | | 0.0198 | 25.0 | 1275 | 0.1749 | 0.9490 | | 0.0349 | 26.0 | 1326 | 0.1586 | 0.9528 | | 0.0337 | 27.0 | 1377 | 0.1343 | 0.9614 | | 0.0261 | 28.0 | 1428 | 0.1624 | 0.9542 | | 0.0253 | 29.0 | 1479 | 0.1727 | 0.9532 | | 0.0271 | 30.0 | 1530 | 0.1631 | 0.9546 | ### Framework versions - Transformers 4.37.2 - Pytorch 1.13.1 - Datasets 2.16.1 - Tokenizers 0.15.1