File size: 1,743 Bytes
5425b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47af526
 
5425b48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47af526
5425b48
 
 
 
 
 
 
47af526
5425b48
 
 
 
 
 
 
47af526
 
 
 
 
5425b48
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: cc-by-sa-4.0
base_model: lexlms/legal-roberta-large
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: legal-roberta-large
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# legal-roberta-large

This model is a fine-tuned version of [lexlms/legal-roberta-large](https://huggingface.co/lexlms/legal-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0297
- F1: 0.4489

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 100
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 30
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2471        | 0.96  | 18   | 0.8701          | 0.4711 |
| 0.1889        | 1.97  | 37   | 0.9103          | 0.4562 |
| 0.1444        | 2.99  | 56   | 0.9706          | 0.4489 |
| 0.1283        | 4.0   | 75   | 1.0204          | 0.4562 |
| 0.1411        | 4.8   | 90   | 1.0297          | 0.4489 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0