File size: 1,954 Bytes
3fbf29e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---

language:
- th
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- fruk19/C_SMALL
metrics:
- wer
model-index:
- name: South_asri
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: aicookcook
      type: fruk19/C_SMALL
      config: default
      split: None
      args: 'config: th'
    metrics:
    - name: Wer
      type: wer
      value: 3.7677461386031106
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# South_asri



This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aicookcook dataset.

It achieves the following results on the evaluation set:

- Loss: 0.0347

- Wer: 3.7677



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000

- num_epochs: 6
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.0304        | 2.0   | 6000  | 0.0440          | 5.5648 |
| 0.0061        | 4.0   | 12000 | 0.0358          | 4.1532 |
| 0.0007        | 6.0   | 18000 | 0.0347          | 3.7677 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1