--- language: - th license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - fruk19/C_SMALL metrics: - wer model-index: - name: South_asri results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: aicookcook type: fruk19/C_SMALL config: default split: None args: 'config: th' metrics: - name: Wer type: wer value: 3.7677461386031106 --- # South_asri This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aicookcook dataset. It achieves the following results on the evaluation set: - Loss: 0.0347 - Wer: 3.7677 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.0304 | 2.0 | 6000 | 0.0440 | 5.5648 | | 0.0061 | 4.0 | 12000 | 0.0358 | 4.1532 | | 0.0007 | 6.0 | 18000 | 0.0347 | 3.7677 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.0.1+cu117 - Datasets 2.20.0 - Tokenizers 0.19.1