metadata
pipeline_tag: text-classification
datasets:
- glue
metrics:
- accuracy
tags:
- roberta
task: text-classification
Fixed parameters:
- model_name_or_path:
Bhumika/roberta-base-finetuned-sst2
- dataset:
- path:
glue
- eval_split:
validation
- data_keys:
{'primary': 'sentence'}
- ref_keys:
['label']
- name:
sst2
- path:
- quantization_approach:
dynamic
- node_exclusion:
[]
- per_channel:
False
- framework:
onnxruntime
- framework_args:
- opset:
15
- optimization_level:
1
- opset:
- aware_training:
False
Benchmarked parameters:
- operators_to_quantize:
['Add', 'MatMul']
,['Add']
Evaluation
Below, time metrics for
- Batch size: 8
- Input length: 128
operators_to_quantize latency_mean (original, ms) latency_mean (optimized, ms) throughput (original, /s) throughput (optimized, /s) accuracy (original) accuracy (optimized) ['Add', 'MatMul']
| 619.76 161.66 | 1.80 6.20 | 1.000 1.000 ['Add']
| 611.74 478.48 | 1.80 2.20 | 1.000 1.000