|
--- |
|
pipeline_tag: text-classification |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
tags: |
|
- roberta |
|
--- |
|
|
|
**task**: `text-classification` |
|
|
|
Fixed parameters: |
|
* **model_name_or_path**: `Bhumika/roberta-base-finetuned-sst2` |
|
* **dataset**: |
|
* **path**: `glue` |
|
* **eval_split**: `validation` |
|
* **data_keys**: `{'primary': 'sentence'}` |
|
* **ref_keys**: `['label']` |
|
* **name**: `sst2` |
|
* **quantization_approach**: `dynamic` |
|
* **node_exclusion**: `[]` |
|
* **per_channel**: `False` |
|
* **framework**: `onnxruntime` |
|
* **framework_args**: |
|
* **opset**: `15` |
|
* **optimization_level**: `1` |
|
* **aware_training**: `False` |
|
|
|
Benchmarked parameters: |
|
* **operators_to_quantize**: `['Add', 'MatMul']`, `['Add']` |
|
|
|
## Evaluation |
|
Below, time metrics for |
|
* Batch size: 8 |
|
* Input length: 128 |
|
| operators_to_quantize | | latency_mean (original, ms) | latency_mean (optimized, ms) | | throughput (original, /s) | throughput (optimized, /s) | | accuracy (original) | accuracy (optimized) | |
|
| :-------------------: | :-: | :-------------------------: | :--------------------------: | :-: | :-----------------------: | :------------------------: | :-: | :-----------------: | :------------------: | |
|
| `['Add', 'MatMul']` | \| | 619.76 | 161.66 | \| | 1.80 | 6.20 | \| | 1.000 | 1.000 | |
|
| `['Add']` | \| | 611.74 | 478.48 | \| | 1.80 | 2.20 | \| | 1.000 | 1.000 | |
|
|