|
import logging |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Optional |
|
|
|
import datasets |
|
import torch |
|
import transformers |
|
from torchinfo import summary |
|
from torchvision.transforms import Compose, Normalize, ToTensor |
|
from transformers import ( |
|
ConvNextFeatureExtractor, |
|
HfArgumentParser, |
|
ResNetConfig, |
|
ResNetForImageClassification, |
|
Trainer, |
|
TrainingArguments, |
|
) |
|
from transformers.utils import check_min_version |
|
from transformers.utils.versions import require_version |
|
|
|
import numpy as np |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify |
|
them on the command line. |
|
""" |
|
|
|
train_val_split: Optional[float] = field( |
|
default=0.15, metadata={"help": "Percent to split off of train for validation."} |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
}, |
|
) |
|
|
|
|
|
def collate_fn(examples): |
|
pixel_values = torch.stack([example["pixel_values"] for example in examples]) |
|
labels = torch.tensor([example["label"] for example in examples]) |
|
return {"pixel_values": pixel_values, "labels": labels} |
|
|
|
|
|
|
|
check_min_version("4.19.0.dev0") |
|
|
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
def main(): |
|
parser = HfArgumentParser((DataTrainingArguments, TrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
data_args, training_args = parser.parse_json_file( |
|
json_file=os.path.abspath(sys.argv[1]) |
|
) |
|
else: |
|
data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
|
|
log_level = training_args.get_process_log_level() |
|
logger.setLevel(log_level) |
|
transformers.utils.logging.set_verbosity(log_level) |
|
transformers.utils.logging.enable_default_handler() |
|
transformers.utils.logging.enable_explicit_format() |
|
|
|
|
|
logger.warning( |
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" |
|
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" |
|
) |
|
|
|
dataset = datasets.load_dataset("mnist") |
|
|
|
data_args.train_val_split = ( |
|
None if "validation" in dataset.keys() else data_args.train_val_split |
|
) |
|
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: |
|
split = dataset["train"].train_test_split(data_args.train_val_split) |
|
dataset["train"] = split["train"] |
|
dataset["validation"] = split["test"] |
|
|
|
feature_extractor = ConvNextFeatureExtractor( |
|
do_resize=False, do_normalize=False, image_mean=[0.45], image_std=[0.22] |
|
) |
|
|
|
config = ResNetConfig( |
|
num_channels=1, |
|
layer_type="basic", |
|
depths=[2, 2], |
|
hidden_sizes=[32, 64], |
|
num_labels=10, |
|
) |
|
|
|
model = ResNetForImageClassification(config) |
|
|
|
|
|
normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) |
|
_transforms = Compose([ToTensor(), normalize]) |
|
|
|
def transforms(example_batch): |
|
"""Apply _train_transforms across a batch.""" |
|
|
|
example_batch["pixel_values"] = [_transforms(pil_img.convert("L")) for pil_img in example_batch["image"]] |
|
return example_batch |
|
|
|
|
|
metric = datasets.load_metric("accuracy") |
|
|
|
|
|
|
|
def compute_metrics(p): |
|
"""Computes accuracy on a batch of predictions""" |
|
|
|
accuracy = metric.compute(predictions=np.argmax(p.predictions, axis=1), references=p.label_ids) |
|
return accuracy |
|
|
|
if training_args.do_train: |
|
if data_args.max_train_samples is not None: |
|
dataset["train"] = ( |
|
dataset["train"] |
|
.shuffle(seed=training_args.seed) |
|
.select(range(data_args.max_train_samples)) |
|
) |
|
|
|
logger.info("Setting train transform") |
|
|
|
dataset["train"].set_transform(transforms) |
|
|
|
if training_args.do_eval: |
|
if "validation" not in dataset: |
|
raise ValueError("--do_eval requires a validation dataset") |
|
if data_args.max_eval_samples is not None: |
|
dataset["validation"] = ( |
|
dataset["validation"] |
|
.shuffle(seed=training_args.seed) |
|
.select(range(data_args.max_eval_samples)) |
|
) |
|
|
|
logger.info("Setting validation transform") |
|
|
|
dataset["validation"].set_transform(transforms) |
|
|
|
from transformers import trainer_utils |
|
|
|
print(dataset) |
|
|
|
training_args = transformers.TrainingArguments( |
|
output_dir=training_args.output_dir, |
|
do_eval=training_args.do_eval, |
|
do_train=training_args.do_train, |
|
logging_steps = 500, |
|
eval_steps = 500, |
|
save_steps= 500, |
|
remove_unused_columns = False, |
|
per_device_train_batch_size = 32, |
|
save_total_limit = 2, |
|
evaluation_strategy = "steps", |
|
num_train_epochs = 6, |
|
) |
|
|
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset["train"] if training_args.do_train else None, |
|
eval_dataset=dataset["validation"] if training_args.do_eval else None, |
|
compute_metrics=compute_metrics, |
|
tokenizer=feature_extractor, |
|
data_collator=collate_fn, |
|
) |
|
|
|
|
|
if training_args.do_train: |
|
train_result = trainer.train() |
|
trainer.save_model() |
|
trainer.log_metrics("train", train_result.metrics) |
|
trainer.save_metrics("train", train_result.metrics) |
|
trainer.save_state() |
|
|
|
|
|
if training_args.do_eval: |
|
metrics = trainer.evaluate() |
|
trainer.log_metrics("eval", metrics) |
|
trainer.save_metrics("eval", metrics) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|